skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tipping the scales: how geographical scale affects the interpretation of social media behavior in crisis research
Our relationship with technology is constantly evolving, and how we use technology in disasters has evolved even faster. Understanding how to utilize human interactions with technology and the limitations of those interactions will be a crucial building block to contextualizing crisis data. The impact of geographic scale on behavioral change analyses is an unexplored facet of our ability to identify relative severities of crisis situations, magnitudes of localized crises, and total durations of disaster impacts. Within this paper, we aggregate Twitter and hurricane damage data across a wide range of geographic scales and assess the impact of increasing scale on both the recognition of extreme behaviors and the correlation between activity and damage. The power-law relationships identified between many of these variables indicate a direct, definable scalar dependence of social media aggregation analyses, and these relationships can be used to inform more intelligent, equitable, and actionable social media usage in emergency response.  more » « less
Award ID(s):
1837021
PAR ID:
10467704
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Springer Nature
Date Published:
Journal Name:
Natural Hazards
Volume:
112
Issue:
1
ISSN:
0921-030X
Page Range / eLocation ID:
545 to 564
Subject(s) / Keyword(s):
Crisis response Crisis informatics Social media Vulnerability Hurricanes
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Background The COVID-19 pandemic has caused several disruptions in personal and collective lives worldwide. The uncertainties surrounding the pandemic have also led to multifaceted mental health concerns, which can be exacerbated with precautionary measures such as social distancing and self-quarantining, as well as societal impacts such as economic downturn and job loss. Despite noting this as a “mental health tsunami”, the psychological effects of the COVID-19 crisis remain unexplored at scale. Consequently, public health stakeholders are currently limited in identifying ways to provide timely and tailored support during these circumstances. Objective Our study aims to provide insights regarding people’s psychosocial concerns during the COVID-19 pandemic by leveraging social media data. We aim to study the temporal and linguistic changes in symptomatic mental health and support expressions in the pandemic context. Methods We obtained about 60 million Twitter streaming posts originating from the United States from March 24 to May 24, 2020, and compared these with about 40 million posts from a comparable period in 2019 to attribute the effect of COVID-19 on people’s social media self-disclosure. Using these data sets, we studied people’s self-disclosure on social media in terms of symptomatic mental health concerns and expressions of support. We employed transfer learning classifiers that identified the social media language indicative of mental health outcomes (anxiety, depression, stress, and suicidal ideation) and support (emotional and informational support). We then examined the changes in psychosocial expressions over time and language, comparing the 2020 and 2019 data sets. Results We found that all of the examined psychosocial expressions have significantly increased during the COVID-19 crisis—mental health symptomatic expressions have increased by about 14%, and support expressions have increased by about 5%, both thematically related to COVID-19. We also observed a steady decline and eventual plateauing in these expressions during the COVID-19 pandemic, which may have been due to habituation or due to supportive policy measures enacted during this period. Our language analyses highlighted that people express concerns that are specific to and contextually related to the COVID-19 crisis. Conclusions We studied the psychosocial effects of the COVID-19 crisis by using social media data from 2020, finding that people’s mental health symptomatic and support expressions significantly increased during the COVID-19 period as compared to similar data from 2019. However, this effect gradually lessened over time, suggesting that people adapted to the circumstances and their “new normal.” Our linguistic analyses revealed that people expressed mental health concerns regarding personal and professional challenges, health care and precautionary measures, and pandemic-related awareness. This study shows the potential to provide insights to mental health care and stakeholders and policy makers in planning and implementing measures to mitigate mental health risks amid the health crisis. 
    more » « less
  2. In an era increasingly affected by natural and human-caused disasters, the role of social media in disaster communication has become ever more critical. Despite substantial research on social media use during crises, a significant gap remains in detecting crisis-related misinformation. Detecting deviations in information is fundamental for identifying and curbing the spread of misinformation. This study introduces a novel Information Switching Pattern Model to identify dynamic shifts in perspectives among users who mention each other in crisisrelated narratives on social media. These shifts serve as evidence of crisis misinformation affecting user-mention network interactions. The study utilizes advanced natural language processing, network science, and census data to analyze geotagged tweets related to compound disaster events in Oklahoma in 2022. The impact of misinformation is revealed by distinct engagement patterns among various user types, such as bots, private organizations, non-profits, government agencies, and news media throughout different disaster stages. These patterns show how different disasters influence public sentiment, highlight the heightened vulnerability of mobile home communities, and underscore the importance of education and transportation access in crisis response. Understanding these engagement patterns is crucial for detecting misinformation and leveraging social media as an effective tool for risk communication during disasters 
    more » « less
  3. In September 2019, Hurricane Dorian struck the Bahamas and the southeast United States, resulting in widespread damage and loss of life. Drawing from previous crisis communication research on both natural and man-made disasters, this study examines information seeking and medium preferences, attention allocation, and sex differences in these outcomes. Extant literature has found differences between men and women in terms of the volume and types of information wanted during a crisis event, as well as preferences for different media in times of crisis. This literature has yet to examine the degree to which attention allocation may be related to these outcomes. To address these issues in a naturalistic context, a large-scale survey was targeted at residents of states impacted by Hurricane Dorian. Results are consistent with previous research indicating that females engaged in more overall information seeking and sought more information seeking related to tangible goals. Females found interactive media (Internet and social media) to be more useful than males. Evidence was not detected concerning sex differences in the way people found out about the storm and sex differences in attention allocation detected. Results suggested small effects for perceived usefulness of television and Internet on attention allocation for both men and women. Implications for emergency management personnel and public officials are discussed. 
    more » « less
  4. null (Ed.)
    Previous research has identified a link between mental health and cyberbullying, primarily in studies of youth. Fewer studies have examined cyberbullying in adults or how the relation between mental health and cyberbullying might vary based on an individual's social media use. The present research examined how three indicators of mental health—depression, anxiety, and substance use—interact with social media use and gender to predict cyberbullying in adults. In Study 1, U.S. adults recruited through Amazon Mechanical Turk ( N = 525) completed an online survey that included measures of mental health and cyberbullying. Multiple regression analyses revealed significant three-way interactions between mental health, degree of social media use, and gender in models predicting cyberbullying victimization and perpetration. Specifically, for men, depression and anxiety predicted greater cyberbullying victimization and perpetration, particularly among men with relatively higher levels of social media use. In contrast, depression and anxiety were uncorrelated with cyberbullying for women, regardless of level of social media use. Study 2 largely replicated these findings using well-validated measures of mental health (e.g., Center for Epidemiological Studies-Depression scale, Beck Anxiety Inventory, Global Appraisal of Individual Needs Substance Use scale) in U.S. adults recruited through Prolific.co ( N = 482). Together, these results underscore the importance of examining mental health correlates of cyberbullying within the context of social media use and gender and shed light on conditions in which indicators of mental health may be especially beneficial for predicting cyberbullying in adults. 
    more » « less
  5. During the COVID-19 pandemic, local news organizations have played an important role in keeping communities informed about the spread and impact of the virus. We explore how political, social media, and economic factors impacted the way local media reported on COVID-19 developments at a national scale between January 2020 and July 2021. We construct and make available a dataset of over 10,000 local news organizations and their social media handles across the U.S. We use social media data to estimate the population reach of outlets (their “localness”), and capture underlying content relationships between them. Building on this data, we analyze how local and national media covered four key COVID-19 news topics: Statistics and Case Counts, Vaccines and Testing, Public Health Guidelines, and Economic Effects. Our results show that news outlets with higher population reach reported proportionally more on COVID-19 than more local outlets. Separating the analysis by topic, we expose more nuanced trends, for example that outlets with a smaller population reach covered the Statistics and Case Counts topic proportionally more, and the Economic Effects topic proportionally less. Our analysis further shows that people engaged proportionally more and used stronger reactions when COVID-19 news were posted by outlets with a smaller population reach. Finally, we demonstrate that COVID-19 posts in Republican-leaning counties generally received more comments and fewer likes than in Democratic counties, perhaps indicating controversy. 
    more » « less