Nations in the global South have developed hydropower projects at a rapid pace in recent decades, most notably Brazil and China. These projects have long‐documented impacts on social and ecological systems, yet the implications of hydropower for human well‐being and health are not fully understood. In this paper, we examine eight Brazilian Amazon communities in the Madeira river basin, near the Jirau and Santo Antônio dams (sample size: 536 households). We evaluate how impacts on community resources, social capital, and the experience of resettlement influence self‐rated health in these communities. Results suggest that the dams strained community resources and social capital, which were associated with reductions in self‐rated health. In particular, cognitive social capital (i.e., trust) is lower after the dams' construction. The effect of resettlement and compensation is more nuanced and qualified. This work suggests that hydropower projects have broad deleterious impacts on well‐being and health of human populations in hosting regions and that better directed efforts are required on the part of dam developers to reduce these negative outcomes.
Large hydropower projects continue to be built in developing nations, despite their known negative impacts. Large-scale energy projects strain local infrastructure and reduce access to infrastructure for households that live near them. Here we investigate the link between large-scale hydropower projects and stress. Our results suggest that these projects create stress through two mechanisms: strains on community resources and through the process of displacement. We also ask how compensation and resettlement programs condition these relationships. Using data from the Madeira river basin in the Brazilian Amazon, we find that hydropower projects increase stress by reducing access to energy, water, sanitation and land. Compensation provided was not sufficient to moderate this effect.
more » « less- Award ID(s):
- 2020790
- PAR ID:
- 10467738
- Editor(s):
- Sohail, Muhammad Tayyab
- Publisher / Repository:
- Plos One
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 18
- Issue:
- 7
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0284760
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Tackling climate change and human development challenges will require major global investments in renewable energy systems, including possibly into large hydropower. Despite well-known impacts of hydropower dams, most renewable energy assessments neither account for externalities of hydropower nor evaluate possible strategic alternatives. Here we demonstrate how integrating energy systems modeling and strategic hydropower planning can resolve conflicts between renewable energy and dam impacts on rivers. We apply these tools to Myanmar, whose rivers are the last free-flowing rivers of Asia, and where business-as-usual (BAU) plans call for up to 40 GW of new hydropower. We present alternative energy futures that rely more on scalable wind and solar, and less on hydropower (6.7–10.3 GW) than the BAU. Reduced reliance on hydropower allows us to use river basin models to strategically design dam portfolios for minimized impact. Thus, our alternative futures result in greatly reduced impacts on rivers in terms of sediment trapping and habitat fragmentation, and result in lower system costs ($8.4 billion compared to $11.7 billion for the BAU). Our results highlight specific opportunities for Myanmar but also demonstrate global techno-ecological synergies between climate action, equitable human development and conservation of riparian ecosystems and livelihoods.
-
Abstract Electricity and water systems are inextricably linked through water demands for energy generation, and through energy demands for using, moving, and treating water and wastewater. Climate change may stress these interdependencies, together referred to as the energy-water nexus, by reducing water availability for hydropower generation and by increasing irrigation and electricity demand for groundwater pumping, among other feedbacks. Further, many climate adaptation measures to augment water supplies—such as water recycling and desalination—are energy-intensive. However, water and electricity system climate vulnerabilities and adaptations are often studied in isolation, without considering how multiple interactive risks may compound. This paper reviews the fragmented literature and develops a generalized framework for understanding these implications of climate change on the energy-water nexus. We apply this framework in a case study to quantify end-century direct climate impacts on California’s water and electricity resources and estimate the magnitude of the indirect cross-sectoral feedback of electricity demand from various water adaptation strategies. Our results show that increased space cooling demand and decreased hydropower generation are the most significant direct climate change impacts on California’s electricity sector by end-century. In California’s water sector, climate change impacts directly on surface water availability exceed demand changes, but have considerable uncertainty, both in direction and magnitude. Additionally, we find that the energy demands of water sector climate adaptations could significantly affect California’s future electricity system needs. If the worst-case water shortage occurs under climate change, water-conserving adaptation measures can provide large energy savings co-benefits, but other energy-intensive water adaptations may double the direct impacts of climate change on the state’s electricity resource requirement. These results highlight the value of coordinated adaptation planning between the energy and water sectors to achieve mutually beneficial solutions for climate resilience.
-
Abstract Civil infrastructure underpins urban receipts of food, energy, and water (FEW) produced in distant watersheds. In this study, we map flows of FEW goods from watersheds of the contiguous United States to major population centers and highlight the critical infrastructure that supports FEW flows. To do this, we draw upon detailed records of agriculture, electricity, and public water supply production and couple them with commodity flow and infrastructure information. We also compare the flows of virtual water embedded in food and energy commodity flows with physical water flows in inter‐basin water transfer projects around the country. We found that the virtual blue water transfers through crops and electricity to major US cities was 53 billion and 8 billion m3in 2017, respectively, while physical interbasin water transfers for crops, electricity, and public supply water averaged 20.8 billion m3. Highways are the primary infrastructure used to import virtual water associated with food and fuel into cities, although waterways and railways are most utilized for long‐distance transport. All of the 204 watersheds in the contiguous US support the food, energy, and/or water supplies of major US cities, with dependencies stretching far beyond each city's borders. Still, most cities source the majority of their FEW and embedded water resources from nearby watersheds. Infrastructure such as water supply dams and inland ports serve as important buffers for both local and supply‐chain sourced water stress. These findings can inform efforts to reduce water resources and infrastructure risks in domestic supply chains.
-
Hydropower has been the leading source of renewable energy across the world, accounting for up to 71% of this supply as of 2016. This capacity was built up in North America and Europe between 1920 and 1970 when thousands of dams were built. Big dams stopped being built in developed nations, because the best sites for dams were already developed and environmental and social concerns made the costs unacceptable. Nowadays, more dams are being removed in North America and Europe than are being built. The hydropower industry moved to building dams in the developing world and since the 1970s, began to build even larger hydropower dams along the Mekong River Basin, the Amazon River Basin, and the Congo River Basin. The same problems are being repeated: disrupting river ecology, deforestation, losing aquatic and terrestrial biodiversity, releasing substantial greenhouse gases, displacing thousands of people, and altering people’s livelihoods plus affecting the food systems, water quality, and agriculture near them. This paper studies the proliferation of large dams in developing countries and the importance of incorporating climate change into considerations of whether to build a dam along with some of the governance and compensation challenges. We also examine the overestimation of benefits and underestimation of costs along with changes that are needed to address the legitimate social and environmental concerns of people living in areas where dams are planned. Finally, we propose innovative solutions that can move hydropower toward sustainable practices together with solar, wind, and other renewable sources.more » « less