skip to main content


Title: Real-time Context-Aware Multimodal Network for Activity and Activity-Stage Recognition from Team Communication in Dynamic Clinical Settings

In clinical settings, most automatic recognition systems use visual or sensory data to recognize activities. These systems cannot recognize activities that rely on verbal assessment, lack visual cues, or do not use medical devices. We examined speech-based activity and activity-stage recognition in a clinical domain, making the following contributions. (1) We collected a high-quality dataset representing common activities and activity stages during actual trauma resuscitation events-the initial evaluation and treatment of critically injured patients. (2) We introduced a novel multimodal network based on audio signal and a set of keywords that does not require a high-performing automatic speech recognition (ASR) engine. (3) We designed novel contextual modules to capture dynamic dependencies in team conversations about activities and stages during a complex workflow. (4) We introduced a data augmentation method, which simulates team communication by combining selected utterances and their audio clips, and showed that this method contributed to performance improvement in our data-limited scenario. In offline experiments, our proposed context-aware multimodal model achieved F1-scores of 73.2±0.8% and 78.1±1.1% for activity and activity-stage recognition, respectively. In online experiments, the performance declined about 10% for both recognition types when using utterance-level segmentation of the ASR output. The performance declined about 15% when we omitted the utterance-level segmentation. Our experiments showed the feasibility of speech-based activity and activity-stage recognition during dynamic clinical events.

 
more » « less
Award ID(s):
1763827
PAR ID:
10467839
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
ACM
Date Published:
Journal Name:
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies
Volume:
7
Issue:
1
ISSN:
2474-9567
Page Range / eLocation ID:
1 to 28
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We describe an experiment conducted with three domain experts to understand how well they can recognize types and performance stages of activities using speech data transcribed from verbal communications during dynamic medical teamwork. The insights gained from this experiment will inform the design of an automatic activity recognition system to alert medical teams to process deviations in real time. We contribute to the literature by (1) characterizing how domain experts perceive the dynamics of activity-related speech, and (2) identifying the challenges associated with system design for speech-based activity recognition in complex team-based work settings. 
    more » « less
  2. Fearless Steps (FS) APOLLO is a + 50,000 hr audio resource established by CRSS-UTDallas capturing all communications between NASA-MCC personnel, backroom staff, and Astronauts across manned Apollo Missions. Such a massive audio resource without metadata/unlabeled corpus provides limited benefit for communities outside Speech-and-Language Technology (SLT). Supplementing this audio with rich metadata developed using robust automated mechanisms to transcribe and highlight naturalistic communications can facilitate open research opportunities for SLT, speech sciences, education, and historical archival communities. In this study, we focus on customizing keyword spotting (KWS) and topic detection systems as an initial step towards conversational understanding. Extensive research in automatic speech recognition (ASR), speech activity, and speaker diarization using manually transcribed 125 h FS Challenge corpus has demonstrated the need for robust domain-specific model development. A major challenge in training KWS systems and topic detection models is the availability of word-level annotations. Forced alignment schemes evaluated using state-of-the-art ASR show significant degradation in segmentation performance. This study explores challenges in extracting accurate keyword segments using existing sentence-level transcriptions and proposes domain-specific KWS-based solutions to detect conversational topics in audio streams. 
    more » « less
  3. In this study, we investigate how different types of masks affect automatic emotion classification in different channels of audio, visual, and multimodal. We train emotion classification models for each modality with the original data without mask and the re-generated data with mask respectively, and investigate how muffled speech and occluded facial expressions change the prediction of emotions. Moreover, we conduct the contribution analysis to study how muffled speech and occluded face interplay with each other and further investigate the individual contribution of audio, visual, and audio-visual modalities to the prediction of emotion with and without mask. Finally, we investigate the cross-corpus emotion recognition across clear speech and re-generated speech with different types of masks, and discuss the robustness of speech emotion recognition. 
    more » « less
  4. null (Ed.)
    Human listeners use specific cues to recognize speech and recent experiments have shown that certain time-frequency regions of individual utterances are more important to their correct identification than others. A model that could identify such cues or regions from clean speech would facilitate speech recognition and speech enhancement by focusing on those important regions. Thus, in this paper we present a model that can predict the regions of individual utterances that are important to an automatic speech recognition (ASR) “listener” by learning to add as much noise as possible to these utterances while still permitting the ASR to correctly identify them. This work utilizes a continuous speech recognizer to recognize multi-word utterances and builds upon our previous work that performed the same process for an isolated word recognizer. Our experimental results indicate that our model can apply noise to obscure 90.5% of the spectrogram while leaving recognition performance nearly unchanged. 
    more » « less
  5. Although non-profit commercial products such as LENA can provide valuable feedback to parents and early childhood educators about their children’s or student’s daily communication interactions, their cost and technology requirements put them out of reach of many families who could benefit. Over the last two decades, smartphones have become commonly used in most households irrespective of their socio-economic background. In this study, conducted during the COVID-19 pandemic, we aim to compare audio collected on LENA recorders versus smartphones available to families in an unsupervised data collection protocol. Approximately 10 hours of audio evaluated in this study was collected by three families in their homes during parent-child science book reading activities with their children. We report comparisons and found similar performance between the two audio capture devices based on their speech signal-tonoise ratio (NIST STNR) and word-error-rates calculated using automatic speech recognition (ASR) engines. Finally, we discuss implications of this study for expanding this technology to more diverse populations, limitations and future directions. 
    more » « less