Abstract A technique for developing convex dual variational principles for the governing PDE of nonlinear elastostatics and elastodynamics is presented. This allows the definition of notions of a variational dual solution and a dual solution corresponding to the PDEs of nonlinear elasticity, even when the latter arise as formal Euler–Lagrange equations corresponding to non-quasiconvex elastic energy functionals whose energy minimizers do not exist. This is demonstrated rigorously in the case of elastostatics for the Saint-Venant Kirchhoff material (in all dimensions), where the existence of variational dual solutions is also proven. The existence of a variational dual solution for the incompressible neo-Hookean material in 2-d is also shown. Stressed and unstressed elastostatic and elastodynamic solutions in 1 space dimension corresponding to a non-convex, double-well energy are computed using the dual methodology. In particular, we show the stability of a dual elastodynamic equilibrium solution for which there are regions of non-vanishing length with negative elastic stiffness, i.e. non-hyperbolic regions, for which the corresponding primal problem is ill-posed and demonstrates an explosive ‘Hadamard instability;’ this appears to have implications for the modeling of physically observed softening behavior in macroscopic mechanical response.
more »
« less
A Dual Variational Principle for Nonlinear Dislocation Dynamics
Abstract A dual variational principle is defined for the nonlinear system of PDE describing the dynamics of dislocations in elastic solids. The dual variational principle accounting for a specified set of initial and boundary conditions for a general class of PDE is also developed.
more »
« less
- Award ID(s):
- 2021019
- PAR ID:
- 10467916
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Journal of Elasticity
- ISSN:
- 0374-3535
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
A finite element based computational scheme is developed and employed to assess a duality based variational approach to the solution of the linear heat and transport PDE in one space dimension and time, and the nonlinear system of ODEs of Euler for the rotation of a rigid body about a fixed point. The formulation turns initial-(boundary) value problems into degenerate elliptic boundary value problems in (space)-time domains representing the Euler-Lagrange equations of suitably designed dual functionals in each of the above problems. We demonstrate reasonable success in approximating solutions of this range of parabolic, hyperbolic, and ODE primal problems, which includes energy dissipation as well as conservation, by a unified dual strategy lending itself to a variational formulation. The scheme naturally associates a family of dual solutions to a unique primal solution; such ‘gauge invariance’ is demonstrated in our computed solutions of the heat and transport equations, including the case of a transient dual solution corresponding to a steady primal solution of the heat equation. Primal evolution problems with causality are shown to be correctly approximated by noncausal dual problems.more » « less
-
Abstract In this work, we investigate the existence and uniqueness properties of a composite structure (multilayered)–fluid interaction PDE system which arises in multi-physics problems, and particularly in biofluidic applications related to the mammalian blood transportation process. The PDE system under consideration consists of the interactive coupling of 3D Stokes flow and 3D elastic dynamics which gives rise to an additional 2D elastic equation on the boundary interface between these 3D PDE systems. By means of a nonstandard mixed variational formulation, we show that the PDE system generates a$$C_0$$ -semigroup on the associated finite energy space of data. In this work, the presence of the pressure term in the 3D Stokes equation adds a great challenge to our analysis. To overcome this difficulty, we follow a methodology which is based on the necessarily non-Leray-based elimination of the associated pressure term, via appropriate nonlocal operators. Moreover, while we express the fluid solution variable via decoupling of the Stokes equation, we construct the elastic solution variables by solving a mixed variational formulation via a Babuska–Brezzi approach.more » « less
-
Abstract By eliminating unnecessary details, coarse-grained (CG) models provide the necessary efficiency for simulating scales that are inaccessible to higher resolution models. However, because they average over atomic details, the effective potentials governing CG degrees of freedom necessarily incorporate significant entropic contributions, which limit their transferability and complicate the treatment of thermodynamic properties. This work employs a dual-potential approach to consider the energetic and entropic contributions to effective interaction potentials for CG models. Specifically, we consider one- and three-site CG models for ortho-terphenyl (OTP) both above and below its glass transition. We employ the multiscale coarse-graining (MS-CG) variational principle to determine interaction potentials that accurately reproduce the structural properties of an all-atom (AA) model for OTP at each state point. We employ an energy-matching variational principle to determine an energy operator that accurately reproduces the intra- and inter-molecular energy of the AA model. While the MS-CG pair potentials are almost purely repulsive, the corresponding pair energy functions feature a pronounced minima that corresponds to contacting benzene rings. These energetic functions then determine an estimate for the entropic component of the MS-CG interaction potentials. These entropic functions accurately predict the MS-CG pair potentials across a wide range of liquid state points at constant density. Moreover, the entropic functions also predict pair potentials that quite accurately model the AA pair structure below the glass transition. Thus, the dual-potential approach appears a promising approach for modeling AA energetics, as well as for predicting the temperature-dependence of CG effective potentials.more » « less
-
In this paper we revive a special, less-common, variational principle in analytical mechanics (Hertz’ principle of least curvature) to develop a novel variational analogue of Euler's equations for the dynamics of an ideal fluid. The new variational formulation is fundamentally different from those formulations based on Hamilton's principle of least action. Using this new variational formulation, we generalize the century-old problem of the flow over a two-dimensional body; we developed a variational closure condition that is, unlike the Kutta condition, derived from first principles. The developed variational principle reduces to the classical Kutta–Zhukovsky condition in the special case of a sharp-edged airfoil, which challenges the accepted wisdom about the Kutta condition being a manifestation of viscous effects. Rather, we found that it represents conservation of momentum. Moreover, the developed variational principle provides, for the first time, a theoretical model for lift over smooth shapes without sharp edges where the Kutta condition is not applicable. We discuss how this fundamental divergence from current theory can explain discrepancies in computational studies and experiments with superfluids.more » « less
An official website of the United States government

