skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Natural language processing for mental health interventions: a systematic review and research framework
Abstract Neuropsychiatric disorders pose a high societal cost, but their treatment is hindered by lack of objective outcomes and fidelity metrics. AI technologies and specifically Natural Language Processing (NLP) have emerged as tools to study mental health interventions (MHI) at the level of their constituent conversations. However, NLP’s potential to address clinical and research challenges remains unclear. We therefore conducted a pre-registered systematic review of NLP-MHI studies using PRISMA guidelines (osf.io/s52jh) to evaluate their models, clinical applications, and to identify biases and gaps. Candidate studies (n = 19,756), including peer-reviewed AI conference manuscripts, were collected up to January 2023 through PubMed, PsycINFO, Scopus, Google Scholar, and ArXiv. A total of 102 articles were included to investigate their computational characteristics (NLP algorithms, audio features, machine learning pipelines, outcome metrics), clinical characteristics (clinical ground truths, study samples, clinical focus), and limitations. Results indicate a rapid growth of NLP MHI studies since 2019, characterized by increased sample sizes and use of large language models. Digital health platforms were the largest providers of MHI data. Ground truth for supervised learning models was based on clinician ratings (n = 31), patient self-report (n = 29) and annotations by raters (n = 26). Text-based features contributed more to model accuracy than audio markers. Patients’ clinical presentation (n = 34), response to intervention (n = 11), intervention monitoring (n = 20), providers’ characteristics (n = 12), relational dynamics (n = 14), and data preparation (n = 4) were commonly investigated clinical categories. Limitations of reviewed studies included lack of linguistic diversity, limited reproducibility, and population bias. A research framework is developed and validated (NLPxMHI) to assist computational and clinical researchers in addressing the remaining gaps in applying NLP to MHI, with the goal of improving clinical utility, data access, and fairness.  more » « less
Award ID(s):
2142794
PAR ID:
10467991
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Translational Psychiatry
Volume:
13
Issue:
1
ISSN:
2158-3188
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundWhile most health-care providers now use electronic health records (EHRs) to document clinical care, many still treat them as digital versions of paper records. As a result, documentation often remains unstructured, with free-text entries in progress notes. This limits the potential for secondary use and analysis, as machine-learning and data analysis algorithms are more effective with structured data. ObjectiveThis study aims to use advanced artificial intelligence (AI) and natural language processing (NLP) techniques to improve diagnostic information extraction from clinical notes in a periodontal use case. By automating this process, the study seeks to reduce missing data in dental records and minimize the need for extensive manual annotation, a long-standing barrier to widespread NLP deployment in dental data extraction. Materials and MethodsThis research utilizes large language models (LLMs), specifically Generative Pretrained Transformer 4, to generate synthetic medical notes for fine-tuning a RoBERTa model. This model was trained to better interpret and process dental language, with particular attention to periodontal diagnoses. Model performance was evaluated by manually reviewing 360 clinical notes randomly selected from each of the participating site’s dataset. ResultsThe results demonstrated high accuracy of periodontal diagnosis data extraction, with the sites 1 and 2 achieving a weighted average score of 0.97-0.98. This performance held for all dimensions of periodontal diagnosis in terms of stage, grade, and extent. DiscussionSynthetic data effectively reduced manual annotation needs while preserving model quality. Generalizability across institutions suggests viability for broader adoption, though future work is needed to improve contextual understanding. ConclusionThe study highlights the potential transformative impact of AI and NLP on health-care research. Most clinical documentation (40%-80%) is free text. Scaling our method could enhance clinical data reuse. 
    more » « less
  2. ImportanceLarge language models (LLMs) can assist in various health care activities, but current evaluation approaches may not adequately identify the most useful application areas. ObjectiveTo summarize existing evaluations of LLMs in health care in terms of 5 components: (1) evaluation data type, (2) health care task, (3) natural language processing (NLP) and natural language understanding (NLU) tasks, (4) dimension of evaluation, and (5) medical specialty. Data SourcesA systematic search of PubMed and Web of Science was performed for studies published between January 1, 2022, and February 19, 2024. Study SelectionStudies evaluating 1 or more LLMs in health care. Data Extraction and SynthesisThree independent reviewers categorized studies via keyword searches based on the data used, the health care tasks, the NLP and NLU tasks, the dimensions of evaluation, and the medical specialty. ResultsOf 519 studies reviewed, published between January 1, 2022, and February 19, 2024, only 5% used real patient care data for LLM evaluation. The most common health care tasks were assessing medical knowledge such as answering medical licensing examination questions (44.5%) and making diagnoses (19.5%). Administrative tasks such as assigning billing codes (0.2%) and writing prescriptions (0.2%) were less studied. For NLP and NLU tasks, most studies focused on question answering (84.2%), while tasks such as summarization (8.9%) and conversational dialogue (3.3%) were infrequent. Almost all studies (95.4%) used accuracy as the primary dimension of evaluation; fairness, bias, and toxicity (15.8%), deployment considerations (4.6%), and calibration and uncertainty (1.2%) were infrequently measured. Finally, in terms of medical specialty area, most studies were in generic health care applications (25.6%), internal medicine (16.4%), surgery (11.4%), and ophthalmology (6.9%), with nuclear medicine (0.6%), physical medicine (0.4%), and medical genetics (0.2%) being the least represented. Conclusions and RelevanceExisting evaluations of LLMs mostly focus on accuracy of question answering for medical examinations, without consideration of real patient care data. Dimensions such as fairness, bias, and toxicity and deployment considerations received limited attention. Future evaluations should adopt standardized applications and metrics, use clinical data, and broaden focus to include a wider range of tasks and specialties. 
    more » « less
  3. Background In the last decade, there has been a rapid increase in research on the use of artificial intelligence (AI) to improve child and youth participation in daily life activities, which is a key rehabilitation outcome. However, existing reviews place variable focus on participation, are narrow in scope, and are restricted to select diagnoses, hindering interpretability regarding the existing scope of AI applications that target the participation of children and youth in a pediatric rehabilitation setting. Objective The aim of this scoping review is to examine how AI is integrated into pediatric rehabilitation interventions targeting the participation of children and youth with disabilities or other diagnosed health conditions in valued activities. Methods We conducted a comprehensive literature search using established Applied Health Sciences and Computer Science databases. Two independent researchers screened and selected the studies based on a systematic procedure. Inclusion criteria were as follows: participation was an explicit study aim or outcome or the targeted focus of the AI application; AI was applied as part of the provided and tested intervention; children or youth with a disability or other diagnosed health conditions were the focus of either the study or AI application or both; and the study was published in English. Data were mapped according to the types of AI, the mode of delivery, the type of personalization, and whether the intervention addressed individual goal-setting. Results The literature search identified 3029 documents, of which 94 met the inclusion criteria. Most of the included studies used multiple applications of AI with the highest prevalence of robotics (72/94, 77%) and human-machine interaction (51/94, 54%). Regarding mode of delivery, most of the included studies described an intervention delivered in-person (84/94, 89%), and only 11% (10/94) were delivered remotely. Most interventions were tailored to groups of individuals (93/94, 99%). Only 1% (1/94) of interventions was tailored to patients’ individually reported participation needs, and only one intervention (1/94, 1%) described individual goal-setting as part of their therapy process or intervention planning. Conclusions There is an increasing amount of research on interventions using AI to target the participation of children and youth with disabilities or other diagnosed health conditions, supporting the potential of using AI in pediatric rehabilitation. On the basis of our results, 3 major gaps for further research and development were identified: a lack of remotely delivered participation-focused interventions using AI; a lack of individual goal-setting integrated in interventions; and a lack of interventions tailored to individually reported participation needs of children, youth, or families. 
    more » « less
  4. Transformer model architectures have revolutionized the natural language processing (NLP) domain and continue to produce state-of-the-art results in text-based applications. Prior to the emergence of transformers, traditional NLP models such as recurrent and convolutional neural networks demonstrated promising utility for patient-level predictions and health forecasting from longitudinal datasets. However, to our knowledge only few studies have explored transformers for predicting clinical outcomes from electronic health record (EHR) data, and in our estimation, none have adequately derived a health-specific tokenization scheme to fully capture the heterogeneity of EHR systems. In this study, we propose a dynamic method for tokenizing both discrete and continuous patient data, and present a transformer-based classifier utilizing a joint embedding space for integrating disparate temporal patient measurements. We demonstrate the feasibility of our clinical AI framework through multi-task ICU patient acuity estimation, where we simultaneously predict six mortality and readmission outcomes. Our longitudinal EHR tokenization and transformer modeling approaches resulted in more accurate predictions compared with baseline machine learning models, which suggest opportunities for future multimodal data integrations and algorithmic support tools using clinical transformer networks. 
    more » « less
  5. Abstract Background Diabetic retinopathy (DR) is a leading cause of blindness in American adults. If detected, DR can be treated to prevent further damage causing blindness. There is an increasing interest in developing artificial intelligence (AI) technologies to help detect DR using electronic health records. The lesion-related information documented in fundus image reports is a valuable resource that could help diagnoses of DR in clinical decision support systems. However, most studies for AI-based DR diagnoses are mainly based on medical images; there is limited studies to explore the lesion-related information captured in the free text image reports. Methods In this study, we examined two state-of-the-art transformer-based natural language processing (NLP) models, including BERT and RoBERTa, compared them with a recurrent neural network implemented using Long short-term memory (LSTM) to extract DR-related concepts from clinical narratives. We identified four different categories of DR-related clinical concepts including lesions, eye parts, laterality, and severity, developed annotation guidelines, annotated a DR-corpus of 536 image reports, and developed transformer-based NLP models for clinical concept extraction and relation extraction. We also examined the relation extraction under two settings including ‘gold-standard’ setting—where gold-standard concepts were used–and end-to-end setting. Results For concept extraction, the BERT model pretrained with the MIMIC III dataset achieve the best performance (0.9503 and 0.9645 for strict/lenient evaluation). For relation extraction, BERT model pretrained using general English text achieved the best strict/lenient F1-score of 0.9316. The end-to-end system, BERT_general_e2e, achieved the best strict/lenient F1-score of 0.8578 and 0.8881, respectively. Another end-to-end system based on the RoBERTa architecture, RoBERTa_general_e2e, also achieved the same performance as BERT_general_e2e in strict scores. Conclusions This study demonstrated the efficiency of transformer-based NLP models for clinical concept extraction and relation extraction. Our results show that it’s necessary to pretrain transformer models using clinical text to optimize the performance for clinical concept extraction. Whereas, for relation extraction, transformers pretrained using general English text perform better. 
    more » « less