skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Source-encoded waveform inversion in the Northern Hemisphere
SUMMARY We use source-encoded waveform inversion to image Earth’s Northern Hemisphere. The encoding method is based on measurements of Laplace coefficients of stationary wavefields. By assigning to each event a unique frequency, we compute Fréchet derivatives for all events simultaneously based on one ‘super’ forward and one ‘super’ adjoint simulation for a small fraction of the computational cost of classical waveform inversion with the same data set. No cross-talk noise is introduced in the process, and the method does not require all events to be recorded by all stations. Starting from global model GLAD_M25, we performed 100 conjugate gradient iterations using a data set consisting of 786 earthquakes recorded by 9846 stations. Synthetic inversion tests show that we achieve good convergence based on this data set, and we see a consistent misfit reduction during the inversion. The new model, named SE100, has much higher spatial resolution than GLAD_M25, revealing details of the Yellowstone and Iceland hotspots, subduction beneath the Western United States and the upper mantle structure beneath the Arctic Ocean.  more » « less
Award ID(s):
2244661
PAR ID:
10468019
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Geophysical Journal International
Volume:
235
Issue:
3
ISSN:
0956-540X
Format(s):
Medium: X Size: p. 2305-2322
Size(s):
p. 2305-2322
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The lithospheric structure of the contiguous US and surrounding regions offers clues into the tectonic history, including interactions between subducting slabs and cratons. In this paper, we present a new radially anisotropic shear wave speed model of the upper mantle (70–410 km) of the contiguous US and surrounding regions, constrained by seismic full‐waveform inversion. The new model (named CUSRA2021) utilizes frequency‐dependent travel time measurements, from 160 earthquake events recorded by 5,280 stations. The data coverage in eastern US is improved by incorporating more intraplate earthquakes. The final model exhibits clear and detailed shear wave speed anomalies correlating well with tectonic units such as North America Craton (high‐Vs), Cascadia subduction zones (high‐Vs), Columbia Plateau (low‐Vs), Basin and Range (low‐Vs), etc. In particular, the detailed structure of the North America Craton beneath Illinois basin is revealed. The depth of high‐Vs anomaly beneath the North America Craton correlates well with S‐to‐P receiver function and SH reflection results. Besides, the radial anisotropy in the Craton lithosphere shows a layering structure, which may relate to the process of lithospheric accretion and the origin of mid‐lithosphere discontinuities. 
    more » « less
  2. SUMMARY We present a new 3-D radially anisotropic seismic velocity model EARA2024 of the crust and mantle beneath East Asia and the northwestern Pacific using adjoint full-waveform inversion tomography. We construct the EARA2024 model by iteratively minimizing the waveform similarity misfit between the synthetic and observed waveforms from 142 earthquakes recorded by about 2000 broad-band stations in East Asia. Compared to previous studies, this new model renders significantly improved images of the subducted oceanic plate in the upper mantle, mantle transition zone, and uppermost lower mantle along the Kuril, Japan, Izu-Bonin and Ryukyu Trenches. Complex slab deformation and break-offs are observed at different depths. Moreover, our model provides new insights into the origins of intraplate volcanoes in East Asia, including the Changbaishan, Datong-Fengzhen, Tengchong and Hainan volcanic fields. 
    more » « less
  3. Summary The contiguous United States has been well instrumented with broadband seismic stations due to the development of the EarthScope Transportable Array. Previous studies have provided various 3D seismic wave speed models for the crust and upper mantle with improved resolution. However, discrepancies exist among these models due to differences in both data sets and tomographic methods, which introduce uncertainties on the imaged lithospheic structure beneath North America. A further model refinement using the best data coverage and advanced tomographic methods such as full-waveform inversion (FWI) is expected to provide better seismological constraints. Initial models have significant impacts on the convergence of FWIs. However, how to select an optimal initial model is not well investigated. Here, we present a data-driven initial model selection procedure for the contiguous US and surrounding regions by assessing waveform fitting and misfit functions between the observations and synthetics from candidate models. We use a data set of waveforms from 30 earthquakes recorded by 5,820 stations across North America. The results suggest that the tested 3D models capture well long-period waveforms while showing discrepancies in short-periods especially on tangential components. This observation indicates that the smaller-scale heterogeneities and radial anisotropy in the crust and upper mantle are not well constrained. Based on our test results, a hybrid initial model combining S40RTS or S362ANI in the mantle and US.2016 for Vsv and CRUST1.0 for Vsh in the crust is compatible for future FWIs to refine the lithospheric structure of North America. 
    more » « less
  4. SUMMARY Accurate synthetic seismic wavefields can now be computed in 3-D earth models using the spectral element method (SEM), which helps improve resolution in full waveform global tomography. However, computational costs are still a challenge. These costs can be reduced by implementing a source stacking method, in which multiple earthquake sources are simultaneously triggered in only one teleseismic SEM simulation. One drawback of this approach is the perceived loss of resolution at depth, in particular because high-amplitude fundamental mode surface waves dominate the summed waveforms, without the possibility of windowing and weighting as in conventional waveform tomography. This can be addressed by redefining the cost-function and computing the cross-correlation wavefield between pairs of stations before each inversion iteration. While the Green’s function between the two stations is not reconstructed as well as in the case of ambient noise tomography, where sources are distributed more uniformly around the globe, this is not a drawback, since the same processing is applied to the 3-D synthetics and to the data, and the source parameters are known to a good approximation. By doing so, we can separate time windows with large energy arrivals corresponding to fundamental mode surface waves. This opens the possibility of designing a weighting scheme to bring out the contribution of overtones and body waves. It also makes it possible to balance the contributions of frequently sampled paths versus rarely sampled ones, as in more conventional tomography. Here we present the results of proof of concept testing of such an approach for a synthetic 3-component long period waveform data set (periods longer than 60 s), computed for 273 globally distributed events in a simple toy 3-D radially anisotropic upper mantle model which contains shear wave anomalies at different scales. We compare the results of inversion of 10 000 s long stacked time-series, starting from a 1-D model, using source stacked waveforms and station-pair cross-correlations of these stacked waveforms in the definition of the cost function. We compute the gradient and the Hessian using normal mode perturbation theory, which avoids the problem of cross-talk encountered when forming the gradient using an adjoint approach. We perform inversions with and without realistic noise added and show that the model can be recovered equally well using one or the other cost function. The proposed approach is computationally very efficient. While application to more realistic synthetic data sets is beyond the scope of this paper, as well as to real data, since that requires additional steps to account for such issues as missing data, we illustrate how this methodology can help inform first order questions such as model resolution in the presence of noise, and trade-offs between different physical parameters (anisotropy, attenuation, crustal structure, etc.) that would be computationally very costly to address adequately, when using conventional full waveform tomography based on single-event wavefield computations. 
    more » « less
  5. Abstract To explore seismic structures beneath the Australian continents and subduction zone geometry around the Australian plate, we introduce a new radially‐anisotropic shear‐wavespeed model, AU21. By employing full‐waveform inversion on data from 248 regional earthquakes and 1,102 seismographic stations, we iteratively refine AU21, resulting in 32,655 body‐wave and 35,897 surface wave measurements. AU21 reveals distinct shear‐wavespeed contrasts between the Phanerozoic eastern continental margin and the Precambrian western and central Australia, with the lithosphere‐asthenosphere boundary estimated at 250–300 km beneath central and western Australia. Notably, a unique weak radial anisotropy layer at 80–150 km is identified beneath the western Australian craton, possibly due to alignments of dipping layers or tilted symmetry axes of anisotropic minerals. Furthermore, slow anomalies extending to the uppermost lower mantle beneath the east of New Guinea, Tasmania, and the Tasman Sea indicate deep thermal activities, likely contributing to the formation of a low wavespeed band along the eastern Australian margin. In addition, our findings demonstrate the stagnant Tonga slab within the mantle transition zone and the Kermadec slab's penetration through the 660‐km discontinuity into the lower mantle. 
    more » « less