skip to main content

Title: Learning Lightweight Neural Networks via Channel-Split Recurrent Convolution
Lightweight neural networks refer to deep networks with small numbers of parameters, which can be deployed in resource-limited hardware such as embedded systems. To learn such lightweight networks effectively and efficiently, in this paper we propose a novel convolutional layer, namely Channel-Split Recurrent Convolution (CSR-Conv), where we split the output channels to generate data sequences with length T as the input to the recurrent layers with shared weights. As a consequence, we can construct lightweight convolutional networks by simply replacing (some) linear convolutional layers with CSR-Conv layers. We prove that under mild conditions the model size decreases with the rate of O( 1 ). Empirically we demonstrate the state-of-the-art T2 performance using VGG-16, ResNet-50, ResNet-56, ResNet- 110, DenseNet-40, MobileNet, and EfficientNet as backbone networks on CIFAR-10 and ImageNet. Codes can be found on Conv.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Date Published:
Medium: X
Hawaii, US
Sponsoring Org:
National Science Foundation
More Like this
  1. It is appealing but challenging to achieve real-time deep neural network (DNN) inference on mobile devices because even the powerful modern mobile devices are considered “resource-constrained” when executing large-scale DNNs. It necessitates the sparse model inference via weight pruning, i.e., DNN weight sparsity, and it is desirable to design a new DNN weight sparsity scheme that can facilitate real-time inference on mobile devices while preserving a high sparse model accuracy. This paper designs a novel mobile inference acceleration framework GRIM that is General to both convolutional neural networks (CNNs) and recurrent neural networks (RNNs) and that achieves Real-time execution and high accuracy, leveraging fine-grained structured sparse model Inference and compiler optimizations for Mobiles. We start by proposing a new fine-grained structured sparsity scheme through the Block-based Column-Row (BCR) pruning. Based on this new fine-grained structured sparsity, our GRIM framework consists of two parts: (a) the compiler optimization and code generation for real-time mobile inference; and (b) the BCR pruning optimizations for determining pruning hyperparameters and performing weight pruning. We compare GRIM with Alibaba MNN, TVM, TensorFlow-Lite, a sparse implementation based on CSR, PatDNN, and ESE (a representative FPGA inference acceleration framework for RNNs), and achieve up to 14.08× speedup. 
    more » « less
  2. Deformable Convolutional Networks (DCN) have been proposed as a powerful tool to boost the representation power of Convolutional Neural Networks (CNN) in computer vision tasks via adaptive sampling of the input feature map. Much like vision transformers, DCNs utilize a more flexible inductive bias than standard CNNs and have also been shown to improve performance of particular models. For example, drop-in DCN layers were shown to increase the AP score of Mask RCNN by 10.6 points while introducing only 1% additional parameters and FLOPs, improving the state-of-the art model at the time of publication. However, despite evidence that more DCN layers placed earlier in the network can further improve performance, we have not seen this trend continue with further scaling of deformations in CNNs, unlike for vision transformers. Benchmarking experiments show that a realistically sized DCN layer (64H×64W, 64 in-out channel) incurs a 4× slowdown on a GPU platform, discouraging the more ubiquitous use of deformations in CNNs. These slowdowns are caused by the irregular input-dependent access patterns of the bilinear interpolation operator, which has a disproportionately low arithmetic intensity (AI) compared to the rest of the DCN. To address the disproportionate slowdown of DCNs and enable their expanded use in CNNs, we propose DefT, a series of workload-aware optimizations for DCN kernels. DefT identifies performance bottlenecks in DCNs and fuses specific operators that are observed to limit DCN AI. Our approach also uses statistical information of DCN workloads to adapt the workload tiling to the DCN layer dimensions, minimizing costly out-of-boundary input accesses. Experimental results show that DefT mitigates up to half of DCN slowdown over the current-art PyTorch implementation. This translates to a layerwise speedup of up to 134% and a reduction of normalized training time of 46% on a fully DCN-enabled ResNet model. 
    more » « less
  3. Lateral movement is a key stage of system compromise used by advanced persistent threats. Detecting it is no simple task. When network host logs are abstracted into discrete temporal graphs, the problem can be reframed as anomalous edge detection in an evolving network. Research in modern deep graph learning techniques has produced many creative and complicated models for this task. However, as is the case in many machine learning fields, the generality of models is of paramount importance for accuracy and scalability during training and inference. In this article, we propose a formalized approach to this problem with a framework we call Euler . It consists of a model-agnostic graph neural network stacked upon a model-agnostic sequence encoding layer such as a recurrent neural network. Models built according to the Euler framework can easily distribute their graph convolutional layers across multiple machines for large performance improvements. Additionally, we demonstrate that Euler -based models are as good, or better, than every state-of-the-art approach to anomalous link detection and prediction that we tested. As anomaly-based intrusion detection systems, our models efficiently identified anomalous connections between entities with high precision and outperformed all other unsupervised techniques for anomalous lateral movement detection. Additionally, we show that as a piece of a larger anomaly detection pipeline, Euler models perform well enough for use in real-world systems. With more advanced, yet still lightweight, alerting mechanisms ingesting the embeddings produced by Euler models, precision is boosted from 0.243, to 0.986 on real-world network traffic. 
    more » « less
  4. Model compression is an important technique to facilitate efficient embedded and hardware implementations of deep neural networks (DNNs), a number of prior works are dedicated to model compression techniques. The target is to simultaneously reduce the model storage size and accelerate the computation, with minor effect on accuracy. Two important categories of DNN model compression techniques are weight pruning and weight quantization. The former leverages the redundancy in the number of weights, whereas the latter leverages the redundancy in bit representation of weights. These two sources of redundancy can be combined, thereby leading to a higher degree of DNN model compression. However, a systematic framework of joint weight pruning and quantization of DNNs is lacking, thereby limiting the available model compression ratio. Moreover, the computation reduction, energy efficiency improvement, and hardware performance overhead need to be accounted besides simply model size reduction, and the hardware performance overhead resulted from weight pruning method needs to be taken into consideration. To address these limitations, we present ADMM-NN, the first algorithm-hardware co-optimization framework of DNNs using Alternating Direction Method of Multipliers (ADMM), a powerful technique to solve non-convex optimization problems with possibly combinatorial constraints. The first part of ADMM-NN is a systematic, joint framework of DNN weight pruning and quantization using ADMM. It can be understood as a smart regularization technique with regularization target dynamically updated in each ADMM iteration, thereby resulting in higher performance in model compression than the state-of-the-art. The second part is hardware-aware DNN optimizations to facilitate hardware-level implementations. We perform ADMM-based weight pruning and quantization considering (i) the computation reduction and energy efficiency improvement, and (ii) the hardware performance overhead due to irregular sparsity. The first requirement prioritizes the convolutional layer compression over fully-connected layers, while the latter requires a concept of the break-even pruning ratio, defined as the minimum pruning ratio of a specific layer that results in no hardware performance degradation. Without accuracy loss, ADMM-NN achieves 85× and 24× pruning on LeNet-5 and AlexNet models, respectively, --- significantly higher than the state-of-the-art. The improvements become more significant when focusing on computation reduction. Combining weight pruning and quantization, we achieve 1,910× and 231× reductions in overall model size on these two benchmarks, when focusing on data storage. Highly promising results are also observed on other representative DNNs such as VGGNet and ResNet-50. We release codes and models at 
    more » « less
  5. With the wider adoption of edge computing services, intelligent edge devices, and high-speed V2X communication, compute-intensive tasks for autonomous vehicles, such as object detection using camera, LiDAR, and/or radar data, can be partially offloaded to road-side edge servers. However, data privacy becomes a major concern for vehicular edge computing, as sensitive sensor data from vehicles can be observed and used by edge servers. We aim to address the privacy problem by protecting both vehicles’ sensor data and the detection results. In this paper, we present vehicle–edge cooperative deep-learning networks with privacy protection for object-detection tasks, named vePOD for short. In vePOD, we leverage the additive secret sharing theory to develop secure functions for every layer in an object-detection convolutional neural network (CNN). A vehicle’s sensor data is split and encrypted into multiple secret shares, each of which is processed on an edge server by going through the secure layers of a detection network. The detection results can only be obtained by combining the partial results from the participating edge servers. We have developed proof-of-concept detection networks with secure layers: vePOD Faster R-CNN (two-stage detection) and vePOD YOLO (single-stage detection). Experimental results on public datasets show that vePOD does not degrade the accuracy of object detection and, most importantly, it protects data privacy for vehicles. The execution of a vePOD object-detection network with secure layers is orders of magnitude faster than the existing approaches for data privacy. To the best of our knowledge, this is the first work that targets privacy protection in object-detection tasks with vehicle–edge cooperative computing. 
    more » « less