skip to main content


Title: DETECTION OF CLOUDS IN MEDIUM-RESOLUTION SATELLITE IMAGERY USING DEEP CONVOLUTIONAL NEURAL NETS
Cloud detection is an inextricable pre-processing step in remote sensing image analysis workflows. Most of the traditional rule-based and machine-learning-based algorithms utilize low-level features of the clouds and classify individual cloud pixels based on their spectral signatures. Cloud detection using such approaches can be challenging due to a multitude of factors including harsh lighting conditions, the presence of thin clouds, the context of surrounding pixels, and complex spatial patterns. In recent studies, deep convolutional neural networks (CNNs) have shown outstanding results in the computer vision domain. These methods are practiced for better capturing the texture, shape as well as context of images. In this study, we propose a deep learning CNN approach to detect cloud pixels from medium-resolution satellite imagery. The proposed CNN accounts for both the low-level features, such as color and texture information as well as high-level features extracted from successive convolutions of the input image. We prepared a cloud-pixel dataset of approximately 7273 randomly sampled 320 by 320 pixels image patches taken from a total of 121 Landsat-8 (30m) and Sentinel-2 (20m) image scenes. These satellite images come with cloud masks. From the available data channels, only blue, green, red, and NIR bands are fed into the model. The CNN model was trained on 5300 image patches and validated on 1973 independent image patches. As the final output from our model, we extract a binary mask of cloud pixels and non-cloud pixels. The results are benchmarked against established cloud detection methods using standard accuracy metrics.

 
more » « less
Award ID(s):
1927872
NSF-PAR ID:
10468121
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Date Published:
Journal Name:
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences
Volume:
XLVI-M-2-2022
ISSN:
2194-9034
Page Range / eLocation ID:
103 to 109
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Fine-scale sea ice conditions are key to our efforts to understand and model climate change. We propose the first deep learning pipeline to extract fine-scale sea ice layers from high-resolution satellite imagery (Worldview-3). Extracting sea ice from imagery is often challenging due to the potentially complex texture from older ice floes (i.e., floating chunks of sea ice) and surrounding slush ice, making ice floes less distinctive from the surrounding water. We propose a pipeline using a U-Net variant with a Resnet encoder to retrieve ice floe pixel masks from very-high-resolution multispectral satellite imagery. Even with a modest-sized hand-labeled training set and the most basic hyperparameter choices, our CNN-based approach attains an out-of-sample F1 score of 0.698–a nearly 60% improvement when compared to a watershed segmentation baseline. We then supplement our training set with a much larger sample of images weak-labeled by a watershed segmentation algorithm. To ensure watershed derived pack-ice masks were a good representation of the underlying images, we created a synthetic version for each weak-labeled image, where areas outside the mask are replaced by open water scenery. Adding our synthetic image dataset, obtained at minimal effort when compared with hand-labeling, further improves the out-of-sample F1 score to 0.734. Finally, we use an ensemble of four test metrics and evaluated after mosaicing outputs for entire scenes to mimic production setting during model selection, reaching an out-of-sample F1 score of 0.753. Our fully-automated pipeline is capable of detecting, monitoring, and segmenting ice floes at a very fine level of detail, and provides a roadmap for other use-cases where partial results can be obtained with threshold-based methods but a context-robust segmentation pipeline is desired. 
    more » « less
  2. null (Ed.)
    Identifying dust aerosols from passive satellite images is of great interest for many applications. In this study, we developed five different machine-learning (ML) based algorithms, including Logistic Regression, K Nearest Neighbor, Random Forest (RF), Feed Forward Neural Network (FFNN), and Convolutional Neural Network (CNN), to identify dust aerosols in the daytime satellite images from the Visible Infrared Imaging Radiometer Suite (VIIRS) under cloud-free conditions on a global scale. In order to train the ML algorithms, we collocated the state-of-the-art dust detection product from the Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) with the VIIRS observations along the CALIOP track. The 16 VIIRS M-band observations with the center wavelength ranging from deep blue to thermal infrared, together with solar-viewing geometries and pixel time and locations, are used as the predictor variables. Four different sets of training input data are constructed based on different combinations of VIIRS pixel and predictor variables. The validation and comparison results based on the collocated CALIOP data indicate that the FFNN method based on all available predictor variables is the best performing one among all methods. It has an averaged dust detection accuracy of about 81%, 89%, and 85% over land, ocean and whole globe, respectively, compared with collocated CALIOP. When applied to off-track VIIRS pixels, the FFNN method retrieves geographical distributions of dust that are in good agreement with on-track results as well as CALIOP statistics. For further evaluation, we compared our results based on the ML algorithms to NOAA’s Aerosol Detection Product (ADP), which is a product that classifies dust, smoke, and ash using physical-based methods. The comparison reveals both similarity and differences. Overall, this study demonstrates the great potential of ML methods for dust detection and proves that these methods can be trained on the CALIOP track and then applied to the whole granule of VIIRS granule. 
    more » « less
  3. Abstract

    Topological data analysis (TDA) is a tool from data science and mathematics that is beginning to make waves in environmental science. In this work, we seek to provide an intuitive and understandable introduction to a tool from TDA that is particularly useful for the analysis of imagery, namely, persistent homology. We briefly discuss the theoretical background but focus primarily on understanding the output of this tool and discussing what information it can glean. To this end, we frame our discussion around a guiding example of classifying satellite images from the sugar, fish, flower, and gravel dataset produced for the study of mesoscale organization of clouds by Rasp et al. We demonstrate how persistent homology and its vectorization, persistence landscapes, can be used in a workflow with a simple machine learning algorithm to obtain good results, and we explore in detail how we can explain this behavior in terms of image-level features. One of the core strengths of persistent homology is how interpretable it can be, so throughout this paper we discuss not just the patterns we find but why those results are to be expected given what we know about the theory of persistent homology. Our goal is that readers of this paper will leave with a better understanding of TDA and persistent homology, will be able to identify problems and datasets of their own for which persistent homology could be helpful, and will gain an understanding of the results they obtain from applying the included GitHub example code.

    Significance Statement

    Information such as the geometric structure and texture of image data can greatly support the inference of the physical state of an observed Earth system, for example, in remote sensing to determine whether wildfires are active or to identify local climate zones. Persistent homology is a branch of topological data analysis that allows one to extract such information in an interpretable way—unlike black-box methods like deep neural networks. The purpose of this paper is to explain in an intuitive manner what persistent homology is and how researchers in environmental science can use it to create interpretable models. We demonstrate the approach to identify certain cloud patterns from satellite imagery and find that the resulting model is indeed interpretable.

     
    more » « less
  4. Unmanned aerial vehicles (UAVs) equipped with multispectral sensors offer high spatial and temporal resolution imagery for monitoring crop stress at early stages of development. Analysis of UAV-derived data with advanced machine learning models could improve real-time management in agricultural systems, but guidance for this integration is currently limited. Here we compare two deep learning-based strategies for early warning detection of crop stress, using multitemporal imagery throughout the growing season to predict field-scale yield in irrigated rice in eastern Arkansas. Both deep learning strategies showed improvements upon traditional statistical learning approaches including linear regression and gradient boosted decision trees. First, we explicitly accounted for variation across developmental stages using a 3D convolutional neural network (CNN) architecture that captures both spatial and temporal dimensions of UAV images from multiple time points throughout one growing season. 3D-CNNs achieved low prediction error on the test set, with a Root Mean Squared Error (RMSE) of 8.8% of the mean yield. For the second strategy, a 2D-CNN, we considered only spatial relationships among pixels for image features acquired during a single flyover. 2D-CNNs trained on images from a single day were most accurate when images were taken during booting stage or later, with RMSE ranging from 7.4 to 8.2% of the mean yield. A primary benefit of convolutional autoencoder-like models (based on analyses of prediction maps and feature importance) is the spatial denoising effect that corrects yield predictions for individual pixels based on the values of vegetation index and thermal features for nearby pixels. Our results highlight the promise of convolutional autoencoders for UAV-based yield prediction in rice. 
    more » « less
  5. Multi-spectral satellite images that remotely sense the Earth's surface at regular intervals are often contaminated due to occlusion by clouds. Remote sensing imagery captured via satellites, drones, and aircraft has successfully influenced a wide range of fields such as monitoring vegetation health, tracking droughts, and weather forecasting, among others. Researchers studying the Earth's surface are often hindered while gathering reliable observations due to contaminated reflectance values that are sensitive to thin, thick, and cirrus clouds, as well as their shadows. In this study, we propose a deep learning network architecture, CloudNet, to alleviate cloud-occluded remote sensing imagery captured by Landsat-8 satellite for both visible and non-visible spectral bands. We propose a deep neural network model trained on a distributed storage cluster that leverages historical trends within Landsat-8 imagery while complementing this analysis with high-resolution Sentinel-2 imagery. Our empirical benchmarks profile the efficiency of the CloudNet model with a range of cloud-occluded pixels in the input image. We further compare our CloudNet's performance with state-of-the-art deep learning approaches such as SpAGAN and Resnet. We propose a novel method, dynamic hierarchical transfer learning, to reduce computational resource requirements while training the model to achieve the desired accuracy. Our model regenerates features of cloudy images with a high PSNR accuracy of 34.28 dB. 
    more » « less