- PAR ID:
- 10468144
- Publisher / Repository:
- Nonvolatile Memory Workshop
- Date Published:
- Format(s):
- Medium: X
- Location:
- http://nvmw.ucsd.edu/nvmw2023-program/nvmw2023-final20.pdf
- Sponsoring Org:
- National Science Foundation
More Like this
-
For a two-variance model of the Flash read channel that degrades as a function of the number of program/erase cycles, this paper demonstrates that selecting write voltages to maximize the minimum page mutual information (MI) can increase device lifetime. In multi-level cell (MLC) Flash memory, one of four voltage levels is written to each cell, according to the values of the most-significant bit (MSB) page and the least-significant bit (LSB) page. In our model, each voltage level is then distorted by signal-dependent additive Gaussian noise that approximates the Flash read channel. When performing an initial read of a page in MLC flash, one (for LSB) or two (for MSB) bits of information are read for each cell of the page. If LDPC decoding fails after the initial read, then an enhanced-precision read is performed. This paper shows that jointly designing write voltage levels and read thresholds to maximize the minimum MI between a page and its associated initial or enhanced-precision read bits can improve LDPC decoding performance.more » « less
-
This paper uses a mutual-information maximization paradigm to optimize the voltage levels written to cells in a Flash memory. To enable low-latency, each page of Flash memory stores only one coded bit in each Flash memory cell. For example, three-level cell (TL) Flash has three bit channels, one for each of three pages, that together determine which of eight voltage levels are written to each cell. Each Flash page is required to store the same number of data bits, but the various bits stored in the cell typically do not have to provide the same mutual information. A modified version of dynamic-assignment Blahut-Arimoto (DAB) moves the constellation points and adjusts the probability mass function for each bit channel to increase the mutual information of a worst bit channel with the goal of each bit channel providing the same mutual information. The resulting constellation provides essentially the same mutual information to each page while negligibly reducing the mutual information of the overall constellation. The optimized constellations feature points that are neither equally spaced nor equally likely. However, modern shaping techniques such as probabilistic amplitude shaping can provide coded modulations that support such constellations.more » « less
-
We examine the effects of imperfect phase estimation of a reference signal on the bit error rate and mutual information over a communication channel influenced by fading and thermal noise. The Two-Wave Diffuse-Power (TWDP) model is utilized for statistical characterization of propagation environment where there are two dominant line-of-sight components together with diffuse ones. We derive novel analytical expression of the Fourier series for probability density function arising from the composite received signal phase. Further, the expression for the bit error rate is presented and numerically evaluated. We develop efficient analytical, numerical and simulation methods for estimating the value of the error floor and identifying the range of acceptable signal-to-noise ratio (SNR) values in cases when the floor is present during the detection of multilevel phase-shift keying (PSK) signals. In addition, we use Monte Carlo simulations in order to evaluate the mutual information for modulation orders two, four and eight, and identify its dependence on receiver hardware imperfections under the given channel conditions. Our results expose direct correspondence between bit error rate and mutual information value on one side, and the parameters of TWDP channel, SNR and phase noise standard deviation on the other side. The results illustrate that the error floor values are strongly influenced by the phase noise when signals propagate over a TWDP channel. In addition, the phase noise considerably affects the mutual information.
-
Commodity operating system (OS) kernels, such as Windows, Mac OS X, Linux, and FreeBSD, are susceptible to numerous security vulnerabilities. Their monolithic design gives successful attackers complete access to all application data and system resources. Shielding systems such as InkTag, Haven, and Virtual Ghost protect sensitive application data from compromised OS kernels. However, such systems are still vulnerable to side-channel attacks. Worse yet, compromised OS kernels can leverage their control over privileged hardware state to exacerbate existing side channels; recent work has shown that a compromised OS kernel can steal entire documents via side channels. This paper presents defenses against page table and last-level cache (LLC) side-channel attacks launched by a compromised OS kernel. Our page table defenses restrict the OS kernel’s ability to read and write page table pages and defend against page allocation attacks, and our LLC defenses utilize the Intel Cache Allocation Technology along with memory isolation primitives. We proto- type our solution in a system we call Apparition, building on an optimized version of Virtual Ghost. Our evaluation shows that our side-channel defenses add 1% to 18% (with up to 86% for one application) overhead to the optimized Virtual Ghost (relative to the native kernel) on real-world applications.more » « less
-
The new 5G communications standard increases data rates and supports low-latency communication that places constraints on the computational complexity of channel decoders. 5G low-density parity-check (LDPC) codes have the so-called protograph-based raptor-like (PBRL) structure which offers inherent rate-compatibility and excellent performance. Practical LDPC decoder implementations use message-passing decoding with finite precision, which becomes coarse as complexity is more severely constrained. Performance degrades as the precision becomes more coarse. Recently, the information bottleneck (IB) method was used to design mutual-information-maximizing lookup tables that replace conventional finite-precision node computations. The IB approach exchanges messages represented by integers with very small bit width. This paper extends the IB principle to the flexible class of PBRL LDPC codes as standardized in 5G. The extensions include puncturing and rate-compatible IB decoder design. As an example of the new approach, a 4-bit information bottleneck decoder is evaluated for PBRL LDPC codes over a typical range of rates. Frame error rate simulations show that the proposed scheme outperforms offset min-sum decoding algorithms and operates very close to double-precision sum-product belief propagation decoding.more » « less