skip to main content


This content will become publicly available on October 9, 2024

Title: Quantifying Rare Events in Stochastic Reaction-Diffusion Dynamics Using Tensor Networks
The interplay between stochastic chemical reactions and diffusion can generate rich spatiotemporal patterns. While the timescale for individual reaction or diffusion events may be very fast, the timescales for organization can be much longer. That separation of timescales makes it particularly challenging to anticipate how the rapid microscopic dynamics gives rise to macroscopic rates in the nonequilibrium dynamics of many reacting and diffusing chemical species. Within the regime of stochastic fluctuations, the standard approach is to employ Monte Carlo sampling to simulate realizations of random trajectories. Here, we present an alternative numerically tractable approach to extract macroscopic rates from the full ensemble evolution of many-body reaction-diffusion problems. The approach leverages the Doi-Peliti second-quantized representation of reaction-diffusion master equations along with compression and evolution algorithms from tensor networks. By focusing on a Schlögl model with one-dimensional diffusion between L otherwise well-mixed sites, we illustrate the potential of the tensor network approach to compute rates from many-body systems, here with approximately 3 × 10^15 microstates. Specifically, we compute the rate for switching between metastable macrostates, with the expense for computing those rates growing subexponentially in L. Because we directly work with ensemble evolutions, we crucially bypass many of the difficulties encountered by rare event sampling techniques—detailed balance and reaction coordinates are not needed.  more » « less
Award ID(s):
2141385
NSF-PAR ID:
10468165
Author(s) / Creator(s):
;
Publisher / Repository:
Physical Review X
Date Published:
Journal Name:
Physical Review X
Volume:
13
Issue:
4
ISSN:
2160-3308
Subject(s) / Keyword(s):
["Chemical Physics","Statistical Physics"]
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The study of phenomena such as protein folding and conformational changes in molecules is a central theme in chemical physics. Molecular dynamics (MD) simulation is the primary tool for the study of transition processes in biomolecules, but it is hampered by a huge timescale gap between the processes of interest and atomic vibrations that dictate the time step size. Therefore, it is imperative to combine MD simulations with other techniques in order to quantify the transition processes taking place on large timescales. In this work, the diffusion map with Mahalanobis kernel, a meshless approach for approximating the Backward Kolmogorov Operator (BKO) in collective variables, is upgraded to incorporate standard enhanced sampling techniques, such as metadynamics. The resulting algorithm, which we call the target measure Mahalanobis diffusion map (tm-mmap), is suitable for a moderate number of collective variables in which one can approximate the diffusion tensor and free energy. Imposing appropriate boundary conditions allows use of the approximated BKO to solve for the committor function and utilization of transition path theory to find the reactive current delineating the transition channels and the transition rate. The proposed algorithm, tm-mmap, is tested on the two-dimensional Moro–Cardin two-well system with position-dependent diffusion coefficient and on alanine dipeptide in two collective variables where the committor, the reactive current, and the transition rate are compared to those computed by the finite element method (FEM). Finally, tm-mmap is applied to alanine dipeptide in four collective variables where the use of finite elements is infeasible.

     
    more » « less
  2. We present two methods that address the computational complexities arising in hydrogen transfer reactions in enzyme active sites. To address the challenge of reactive rare events, we begin with an ab initio molecular dynamics adaptation of the Caldeira–Leggett system-bath Hamiltonian and apply this approach to the study of the hydrogen transfer rate-determining step in soybean lipoxygenase-1. Through direct application of this method to compute an ensemble of classical trajectories, we discuss the critical role of isoleucine-839 in modulating the primary hydrogen transfer event in SLO-1. Notably, the formation of the hydrogen bond between isoleucine-839 and the acceptor-OH group regulates the electronegativity of the donor and acceptor groups to affect the hydrogen transfer process. Curtailing the formation of this hydrogen bond adversely affects the probability of hydrogen transfer. The second part of this paper deals with complementing the rare event sampled reaction pathways obtained from the aforementioned development through quantum nuclear wavepacket dynamics. Essentially the idea is to construct quantum nuclear dynamics on the potential surfaces obtained along the biased trajectories created as noted above. Here, while we are able to obtain critical insights on the quantum nuclear effects from wavepacket dynamics, we primarily engage in providing an improved computational approach for efficient representation of quantum dynamics data such as potential surfaces and transmission probabilities using tensor networks. We find that utilizing tensor networks yields an accurate and efficient description of time-dependent wavepackets, reduced dimensional nuclear eigenstates and associated potential energy surfaces at much reduced cost. 
    more » « less
  3. A Brownian bridge is a continuous random walk conditioned to end in a given region by adding an effective drift to guide paths toward the desired region of phase space. This idea has many applications in chemical science where one wants to control the endpoint of a stochastic process—e.g., polymer physics, chemical reaction pathways, heat/mass transfer, and Brownian dynamics simulations. Despite its broad applicability, the biggest limitation of the Brownian bridge technique is that it is often difficult to determine the effective drift as it comes from a solution of a Backward Fokker–Planck (BFP) equation that is infeasible to compute for complex or high-dimensional systems. This paper introduces a fast approximation method to generate a Brownian bridge process without solving the BFP equation explicitly. Specifically, this paper uses the asymptotic properties of the BFP equation to generate an approximate drift and determine ways to correct (i.e., re-weight) any errors incurred from this approximation. Because such a procedure avoids the solution of the BFP equation, we show that it drastically accelerates the generation of conditioned random walks. We also show that this approach offers reasonable improvement compared to other sampling approaches using simple bias potentials. 
    more » « less
  4. The temperature dependence of the nuclear free induction decay in the presence of a magnetic-field gradient was found to exhibit motional narrowing in gases upon heating, a behavior that is opposite to that observed in liquids. This has led to the revision of the theoretical framework to include a more detailed description of particle trajectories since decoherence mechanisms depend on histories. In the case of free diffusion and single components, the new model yields the correct temperature trends. The inclusion of boundaries in the current formalism is not straightforward. We present a hybrid SDE-MD (stochastic differential equation - molecular dynamics) approach whereby MD is used to compute an effective viscosity and the latter is fed to the SDE to predict the line shape. The theory is in agreement with the experiments. This two-scale approach, which bridges the gap between short (molecular collisions) and long (nuclear induction) timescales, paves the way for the modeling of complex environments with boundaries, mixtures of chemical species, and intermolecular potentials.

     
    more » « less
  5. Abstract Although the governing equations of many systems, when derived from first principles, may be viewed as known, it is often too expensive to numerically simulate all the interactions they describe. Therefore, researchers often seek simpler descriptions that describe complex phenomena without numerically resolving all the interacting components. Stochastic differential equations (SDEs) arise naturally as models in this context. The growth in data acquisition, both through experiment and through simulations, provides an opportunity for the systematic derivation of SDE models in many disciplines. However, inconsistencies between SDEs and real data at short time scales often cause problems, when standard statistical methodology is applied to parameter estimation. The incompatibility between SDEs and real data can be addressed by deriving sufficient statistics from the time-series data and learning parameters of SDEs based on these. Here, we study sufficient statistics computed from time averages, an approach that we demonstrate to lead to sufficient statistics on a variety of problems and that has the secondary benefit of obviating the need to match trajectories. Following this approach, we formulate the fitting of SDEs to sufficient statistics from real data as an inverse problem and demonstrate that this inverse problem can be solved by using ensemble Kalman inversion. Furthermore, we create a framework for non-parametric learning of drift and diffusion terms by introducing hierarchical, refinable parameterizations of unknown functions, using Gaussian process regression. We demonstrate the proposed methodology for the fitting of SDE models, first in a simulation study with a noisy Lorenz ’63 model, and then in other applications, including dimension reduction in deterministic chaotic systems arising in the atmospheric sciences, large-scale pattern modeling in climate dynamics and simplified models for key observables arising in molecular dynamics. The results confirm that the proposed methodology provides a robust and systematic approach to fitting SDE models to real data. 
    more » « less