skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Intra-canopy leaf trait variation facilitates high leaf area index and compensatory growth in a clonal woody encroaching shrub
Abstract Leaf trait variation enables plants to utilize large gradients of light availability that exist across canopies of high leaf area index (LAI), allowing for greater net carbon gain while reducing light availability for understory competitors. While these canopy dynamics are well understood in forest ecosystems, studies of canopy structure of woody shrubs in grasslands are lacking. To evaluate the investment strategy used by these shrubs, we investigated the vertical distribution of leaf traits and physiology across canopies of Cornus drummondii, the predominant woody encroaching shrub in the Kansas tallgrass prairie. We also examined the impact of disturbance by browsing and grazing on these factors. Our results reveal that leaf mass per area (LMA) and leaf nitrogen per area (Na) varied approximately threefold across canopies of C. drummondii, resulting in major differences in the physiological functioning of leaves. High LMA leaves had high photosynthetic capacity, while low LMA leaves had a novel strategy for maintaining light compensation points below ambient light levels. The vertical allocation of leaf traits in C. drummondii canopies was also modified in response to browsing, which increased light availability at deeper canopy depths. As a result, LMA and Na increased at lower canopy depths, leading to a greater photosynthetic capacity deeper in browsed canopies compared to control canopies. This response, along with increased light availability, facilitated greater photosynthesis and resource-use efficiency deeper in browsed canopies compared to control canopies. Our results illustrate how C. drummondii facilitates high LAI canopies and a compensatory growth response to browsing—both of which are key factors contributing to the success of C. drummondii and other species responsible for grassland woody encroachment.  more » « less
Award ID(s):
2025849
PAR ID:
10467480
Author(s) / Creator(s):
; ; ;
Editor(s):
Cavaleri, Molly
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Tree Physiology
ISSN:
1758-4469
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract In post‐fire Siberian larch forests, where tree density can vary within a burn perimeter, shrubs constitute a substantial portion of the vegetation canopy. Leaf area index (LAI), defined as the one‐sided total green leaf area per unit ground surface area, is useful for characterizing variation in plant canopies. We estimated LAI with allometry for trees and tall shrubs (>0.5 and <1.5 m) across 26 sites with varying tree stem density (0.05–3.3 stems/m2) and canopy cover (4.6%–76.9%) in a uniformly‐aged mature Siberian larch forest that regenerated following a fire ∼75 years ago. We investigated relationships between tree density, tree LAI, and tall shrub LAI, and between LAI and satellite observations of Normalized Difference and Enhanced Vegetation Indices (NDVI and EVI). Across the density gradient, tree LAI increases with increasing tree density, while tall shrub LAI decreases, exhibiting no patterns in combined tree‐shrub LAI. We also found significant positive relationships between tall shrub LAI and NDVI/EVI from PlanetScope and Landsat imagery. These findings suggest that tall shrubs compensate for lower tree LAI in tree canopy gaps, forming a canopy with contiguous combined tree‐shrub LAI across the density gradient. Our findings suggest that NDVI and EVI are more sensitive to variation in tall shrub canopies than variation in tree canopies or combined tree‐shrub canopies in these ecosystems. The results improve our understanding of the relationships between forest density and tree and shrub leaf area and have implications for interpreting spatial variability in LAI, NDVI, and EVI in Siberian boreal forests. 
    more » « less
  2. Abstract Background and AimsVariation in architectural traits related to the spatial and angular distribution of leaf area can have considerable impacts on canopy-scale fluxes contributing to water-use efficiency (WUE). These architectural traits are frequent targets for crop improvement and for improving the understanding and predictions of net ecosystem carbon and water fluxes. MethodsA three-dimensional, leaf-resolving model along with a range of virtually generated hypothetical canopies were used to quantify interactions between canopy structure and WUE by examining its response to variation of leaf inclination independent of leaf azimuth, canopy heterogeneity, vegetation density and physiological parameters. Key ResultsOverall, increasing leaf area index (LAI), increasing the daily-averaged fraction of leaf area projected in the sun direction (Gavg) via the leaf inclination or azimuth distribution and increasing homogeneity had a similar effect on canopy-scale daily fluxes contributing to WUE. Increasing any of these parameters tended to increase daily light interception, increase daily net photosynthesis at low LAI and decrease it at high LAI, increase daily transpiration and decrease WUE. Isolated spherical crowns could decrease photosynthesis by ~60 % but increase daily WUE ≤130 % relative to a homogeneous canopy with equivalent leaf area density. There was no observed optimum in daily canopy WUE as LAI, leaf angle distribution or heterogeneity was varied. However, when the canopy was dense, a more vertical leaf angle distribution could increase both photosynthesis and WUE simultaneously. ConclusionsVariation in leaf angle and density distributions can have a substantial impact on canopy-level carbon and water fluxes, with potential trade-offs between the two. These traits might therefore be viable target traits for increasing or maintaining crop productivity while using less water, and for improvement of simplified models. Increasing canopy density or decreasing canopy heterogeneity increases the impact of leaf angle on WUE and its dependent processes. 
    more » « less
  3. Understanding and predicting the relationship between leaf temperature ( T leaf ) and air temperature ( T air ) is essential for projecting responses to a warming climate, as studies suggest that many forests are near thermal thresholds for carbon uptake. Based on leaf measurements, the limited leaf homeothermy hypothesis argues that daytime T leaf is maintained near photosynthetic temperature optima and below damaging temperature thresholds. Specifically, leaves should cool below T air at higher temperatures (i.e., > ∼25–30°C) leading to slopes <1 in T leaf / T air relationships and substantial carbon uptake when leaves are cooler than air. This hypothesis implies that climate warming will be mitigated by a compensatory leaf cooling response. A key uncertainty is understanding whether such thermoregulatory behavior occurs in natural forest canopies. We present an unprecedented set of growing season canopy-level leaf temperature ( T can ) data measured with thermal imaging at multiple well-instrumented forest sites in North and Central America. Our data do not support the limited homeothermy hypothesis: canopy leaves are warmer than air during most of the day and only cool below air in mid to late afternoon, leading to T can / T air slopes >1 and hysteretic behavior. We find that the majority of ecosystem photosynthesis occurs when canopy leaves are warmer than air. Using energy balance and physiological modeling, we show that key leaf traits influence leaf-air coupling and ultimately the T can / T air relationship. Canopy structure also plays an important role in T can dynamics. Future climate warming is likely to lead to even greater T can , with attendant impacts on forest carbon cycling and mortality risk. 
    more » « less
  4. Summary Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine‐scale observations critical to revealing ecological mechanisms underlying these changes have been lacking.To investigate fine‐scale variation in leaf area with seasonality and drought we conducted monthly ground‐based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structuredLAIalong axes of both canopy height and light environments.Upper canopyLAIincreased during the dry season, whereas lower canopyLAIdecreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understoryLAIincreased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015–2016 severe El Niño drought.Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function. 
    more » « less
  5. Leaf area index (LAI) is commonly used to assess forest canopies, and is calculated as the area of all leaves per unit area of ground. In September 2004, LAI was measured in all Bartlett Experimental Forest stands (C1-C9) of the MELNHE study in New Hampshire, using an LAI-2000 Plant Canopy Analyzer. Variables reported are leaf area index (LAI), standard error of LAI (SEL), diffuse non-interceptance (DIFN), mean tip angle (MTA), standard error of mean tip angle (SEM), and sample size (SMP). Additional detail on the MELNHE project, including a data table of site descriptions and a pdf file with the project description and diagram of plot configuration can be found in this data package: https://portal.edirepository.org/nis/mapbrowse?scope=knb-lter-hbr&identifier=344. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less