Background and Aims Rice accounts for around 20% of the calories consumed by humans. Essential nutrients like zinc (Zn) are crucial for rice growth and for populations relying on rice as a staple food. No well-established study method exists. As a result, we a lack a clear picture of the chemical forms of zinc in rice grain. Furthermore, we do not understand the effects of widespread and variable zinc deficiency in soils on the Zn speciation, and to a lesser extent, its concentration, in grain. Methods The composition and Zn speciation of Cambodian rice grain is analyzed using synchrotron-based microprobe X-ray fluorescence (µ-XRF) and extended X-ray absorption fine-structure spectroscopy (EXAFS). We developed a method to quantify Zn species in different complexes based on the coordination numbers of Zn to oxygen and sulfur at characteristic bond lengths. Results Zn levels in brown rice grain ranged between 15-30 mg kg-1 and were not correlated to Zn availability in soils. 72%-90% of Zn in rice grains is present as Zn-phytate, generally not bioavailable, while smaller quantities of Zn are bound as labile nicotianamine complexes, Zn minerals like ZnCO3¬ or thiols. Conclusion Zn speciation in rice grain is affected by Zn deficiency more than previously recognized. A majority of Zn was bound in phytate complexes in rice grain. Zinc phytate complexes were found in higher concentrations and also in higher proportions, in Zn-deficient soils, consistent with increased phytate production under Zn deficiency. Phytates are generally not bioavailable to humans, so low soil Zn fertility may not only impact grain yields, but also decrease the fraction of grain Zn bioavailable to human consumers. The potential impact of abundant Zn-phytate in environments deficient in Zn on human bioavailability and Zn deficiency requires additional research.
more »
« less
Evaluation of quantitative synchrotron radiation micro-X-ray fluorescence in rice grain
Concentrations of nutrients and contaminants in rice grain affect human health, specifically through the localization and chemical form of elements. Methods to spatially quantify the concentration and speciation of elements are needed to protect human health and characterize elemental homeostasis in plants. Here, an evaluation was carried out using quantitative synchrotron radiation microprobe X-ray fluorescence (SR-µXRF) imaging by comparing average rice grain concentrations of As, Cu, K, Mn, P, S and Zn measured with rice grain concentrations from acid digestion and ICP-MS analysis for 50 grain samples. Better agreement was found between the two methods for high-Zelements. Regression fits between the two methods allowed quantitative concentration maps of the measured elements. These maps revealed that most elements were concentrated in the bran, although S and Zn permeated into the endosperm. Arsenic was highest in the ovular vascular trace (OVT), with concentrations approaching 100 mg kg−1in the OVT of a grain from a rice plant grown in As-contaminated soil. Quantitative SR-µXRF is a useful approach for comparison across multiple studies but requires careful consideration of sample preparation and beamline characteristics.
more »
« less
- Award ID(s):
- 1930806
- PAR ID:
- 10468426
- Publisher / Repository:
- Wiley-Blackwell
- Date Published:
- Journal Name:
- Journal of Synchrotron Radiation
- Volume:
- 30
- Issue:
- 2
- ISSN:
- 1600-5775
- Page Range / eLocation ID:
- 407 to 416
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Methylmercury (MeHg) and, to a lesser extent, inorganic mercury (IHg) contamination of rice is a global public health concern, but little is known about how soil and grain Hg concentrations respond to elevated CO2 (ECO2), or how ECO2 alters movement of Hg through the soil-plant-grain system. To advance knowledge of how Hg contamination of rice will change in the future, this study explored the effect of elevated CO2 (ECO2, c. 800 ppm) on soil, iron plaque, root, stem/leaf, and grain concentrations of MeHg and IHg. We observed evidence that ECO2 increased accumulation of MeHg, but not IHg, in rice grain. For IHg, ECO2 did not alter its uptake from the soil, translocation through the plant, or concentration in rice grain. However, ECO2 did reduce uptake of IHg from the air into leaf tissues, likely as a result of the reduced stomatal conductivity and thus more limited direct uptake from the air. Methylmercury concentrations in the grain of plants grown at ECO2 were significantly higher than those of plants grown at ambient CO2. Moreover, MeHg concentrations were also elevated in stem/leaf (82 %) and root tissue (37 %) for ECO2 plants, although the root-tissue results were not statistically significant. In contrast, soil MeHg concentrations were virtually indistinguishable between treatments, indicating that higher rice grain MeHg concentrations were not likely due to higher microbial IHg methylation in soil. Plant uptake of MeHg into stem/leaves and grain from the soil was significantly greater in the ECO2 treatment; however, translocation patterns of MeHg within the plant itself did not differ between treatments. Notably, these patterns existed despite consistently lower transpiration in the ECO2 treatment, and thus less mass flow of solute towards and through the plant. Our results indicate that as CO2 concentrations rise, the human health risks related to MeHg in grain will likely increase.more » « less
-
Chronological records of elemental concentrations in fish otoliths are a widely used tool to infer the environmental conditions experienced by individual fish. To interpret elemental signals within the otolith, it is important to understand how both external and internal factors impact ion uptake, transport and incorporation. In this study, we have combined chronological records from otoliths and archival data storage tags to quantify the influence of internal (sex, size, age, growth) and external (temperature, depth, salinity) conditions on otolith elemental chemistry of cod (Gadus morhua) in natural settings of the Baltic Sea. This study focused on elements primarily under physiological control: Phosphorus (P), magnesium (Mg) and zinc (Zn); and elements under environmental control: Strontium (Sr), barium (Ba) and manganese (Mn). Based on known spatial and temporal patterns in environmental conditions and fish size, growth, and maturity, we posed a series of hypotheses of expected otolith element patterns. Partial effects of internal and external drivers on element concentration were analyzed using a Linear Mixed Model approach with random variables (fish and year). Predicted effects of otolith concentrations of all elements under physiological control (P, Mg, Zn) showed similar trends, with distinct seasonal patterns (lowest concentration in late spring, highest concentrations in winter), and a positive correlation with water temperature, in addition to higher Zn and lower P in spawning individuals. Predicted effects of otolith concentrations of elements expected to be predominantly under environmental control showed the predicted geographic and depth-related trends based on ambient salinity (Ba) and coastal hypoxia (Mn). However, contrary to expectation, Sr was unrelated to salinity. Predicted otolith Ba, Sr and Mn concentrations also exhibited pronounced seasonal patterns that were out of phase with each other but appeared to be partly explained by spawning/feeding migrations. While performing laboratory validation studies for adult fish is typically not possible, these results highlight the importance of assessing local water chemistry and freshwater endmembers in one’s study system before otolith elemental chemistry can be reliably used to reconstruct fish habitat use and environmental histories.more » « less
-
To trace the phosphorus (P) and potassium (K) content in flooded rice (Oryza sativa L), 14 rice cultivars commonly grown in the Southern United States were evaluated for their P and K concentration in tissue and grain. Field experiments were conducted at two locations in Everglades Agriculture Area (EAA), where flooded rice was cultivated on organic Histosols. Soil pH and Mehlich-3 phosphorus (M3P) were significantly different between locations. At Site I, soil pH, M3P, and Mehlich-3 potassium (M3K) varied in the range of 6.8–7.1, 21.4–36.4 mg kg−1, and 53.9–151.0 mg kg−1, respectively. At Site II, soil pH, M3P and M3K varied in the range of 6.9–7.3, 11.2–20.5 mg kg−1, and 64.8–104.1 mg kg−1, respectively. Stem potassium was the only measured parameter that was significantly different among rice cultivars at both sites. At Site I and Site II, stem K ranged from 14.2–26.6 mg kg−1 and 10.4–19.4 mg kg−1, respectively. No significant difference in yield among cultivars was observed at Site I, whereas Site II had a significant difference in yield among cultivars. At Site I and Site II, yields ranged from 3745–7587 kg ha−1 and 2627–6406 kg ha−1, respectively. None of the cultivars ranked consistently in the same top and bottom position for each measured parameter. Total phosphorus (TP) concentration was highest in grain, whereas total potassium (TK) concentration was highest in the stem. Results suggest incorporation of rice stem into the soil could potentially add fertilizer back to the soil which helps in fertility management.more » « less
-
SUMMARY Grain chalkiness is a major concern in rice production because it impacts milling yield and cooking quality, eventually reducing market value of the rice. A gene encoding vacuolar H+translocating pyrophosphatase (V‐PPase) is a major quantitative trait locus inindicarice, controlling grain chalkiness. Higher transcriptional activity of this gene is associated with increased chalk content. However, whether the suppression ofV‐PPasecould reduce chalkiness is not clear. Furthermore, natural variation in the chalkiness ofjaponicarice has not been linked withV‐PPase. Here, we describe promoter targeting of thejaponica V‐PPaseallele that led to reduced grain chalkiness and the development of more translucent grains. Disruption of a putative GATA element by clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR‐associated protein 9 suppressedV‐PPaseactivity, reduced grain chalkiness and impacted post‐germination growth that could be rescued by the exogenous supply of sucrose. The mature grains of the targeted lines showed a much lower percentage of large or medium chalk. Interestingly, the targeted lines developed a significantly lower chalk under heat stress, a major inducer of grain chalk. Metabolomic analysis showed that pathways related to starch and sugar metabolism were affected in the developing grains of the targeted lines that correlated with higher inorganic pyrophosphate and starch contents and upregulation of starch biosynthesis genes. In summary, we show a biotechnology approach of reducing grain chalkiness in rice by downregulating the transcriptional activity ofV‐PPasethat presumably leads to altered metabolic rates, including starch biosynthesis, resulting in more compact packing of starch granules and formation of translucent rice grains.more » « less
An official website of the United States government

