skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Graph-aware modeling of brain connectivity networks
Functional connections in the brain are frequently represented by weighted networks, with nodes representing locations in the brain and edges representing the strength of connectivity between these locations. One challenge in analyzing such data is that inference at the individual edge level is not particularly biologically meaningful; interpretation is more useful at the level of so-called functional systems or groups of nodes and connections between them; this is often called “graph-aware” inference in the neuroimaging literature. However, pooling over functional regions leads to significant loss of information and lower accuracy. Another challenge is correlation among edge weights within a subject which makes inference based on independence assumptions unreliable. We address both of these challenges with a linear mixed effects model, which accounts for functional systems and for edge dependence, while still modeling individual edge weights to avoid loss of information. The model allows for comparing two populations, such as patients and healthy controls, both at the functional regions level and at individual edge level, leading to biologically meaningful interpretations. We fit this model to resting state fMRI data on schizophrenic patients and healthy controls, obtaining interpretable results consistent with the schizophrenia literature.  more » « less
Award ID(s):
1916222 2052918 1646108
PAR ID:
10468434
Author(s) / Creator(s):
; ;
Publisher / Repository:
Institute of Mathematical Statistics
Date Published:
Journal Name:
The Annals of Applied Statistics
Volume:
17
Issue:
3
ISSN:
1932-6157
Subject(s) / Keyword(s):
Neuroimaging, functional MRI, network analysis
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Schizophrenia (SZ) patients exhibit abnormal static and dynamic functional connectivity across various brain domains. We present a novel approach based on static and dynamic inter‐network connectivity entropy (ICE), which represents the entropy of a given network's connectivity to all the other brain networks. This novel approach enables the investigation of how connectivity strength is heterogeneously distributed across available targets in both SZ patients and healthy controls. We analyzed fMRI data from 151 SZ patients and 160 demographically matched healthy controls (HC). Our assessment encompassed both static and dynamic ICE, revealing significant differences in the heterogeneity of connectivity levels across available functional brain networks between SZ patients and HC. These networks are associated with subcortical (SC), auditory (AUD), sensorimotor (SM), visual (VIS), cognitive control (CC), default mode network (DMN), and cerebellar (CB) functional brain domains. Elevated ICE observed in individuals with SZ suggests that patients exhibit significantly higher randomness in the distribution of time‐varying connectivity strength across functional regions from each source network, compared to HC. C‐means fuzzy clustering analysis of functional ICE correlation matrices revealed that SZ patients exhibit significantly higher occupancy weights in clusters with weak, low‐scale functional entropy correlation, while the control group shows greater occupancy weights in clusters with strong, large‐scale functional entropy correlation. K‐means clustering analysis on time‐indexed ICE vectors revealed that cluster with highest ICE have higher occupancy rates in SZ patients whereas clusters characterized by lowest ICE have larger occupancy rates for control group. Furthermore, our dynamic ICE approach revealed that in HC, the brain primarily communicates through complex, less structured connectivity patterns, with occasional transitions into more focused patterns. Individuals with SZ are significantly less likely to attain these more focused and structured transient connectivity patterns. The proposed ICE measure presents a novel framework for gaining deeper insight into mechanisms of healthy and diseased brain states and represents a useful step forward in developing advanced methods to help diagnose mental health conditions. 
    more » « less
  2. Summary The human brain is a directional network system, in which brain regions are network nodes and the influence exerted by one region on another is a network edge. We refer to this directional information flow from one region to another as directional connectivity. Seizures arise from an epileptic directional network; abnormal neuronal activities start from a seizure onset zone and propagate via a network to otherwise healthy brain regions. As such, effective epilepsy diagnosis and treatment require accurate identification of directional connections among regions, i.e., mapping of epileptic patients’ brain networks. This article aims to understand the epileptic brain network using intracranial electroencephalographic data—recordings of epileptic patients’ brain activities in many regions. The most popular models for directional connectivity use ordinary differential equations (ODE). However, ODE models are sensitive to data noise and computationally costly. To address these issues, we propose a high-dimensional state-space multivariate autoregression (SSMAR) model for the brain’s directional connectivity. Different from standard multivariate autoregression and SSMAR models, the proposed SSMAR features a cluster structure, where the brain network consists of several clusters of densely connected brain regions. We develop an expectation–maximization algorithm to estimate the proposed model and use it to map the interregional networks of epileptic patients in different seizure stages. Our method reveals the evolution of brain networks during seizure development. 
    more » « less
  3. In this article, we develop an analytical approach for estimating brain connectivity networks that accounts for subject heterogeneity. More specifically, we consider a novel extension of a multi‐subject Bayesian vector autoregressive model that estimates group‐specific directed brain connectivity networks and accounts for the effects of covariates on the network edges. We adopt a flexible approach, allowing for (possibly) nonlinear effects of the covariates on edge strength via a novel Bayesian nonparametric prior that employs a weighted mixture of Gaussian processes. For posterior inference, we achieve computational scalability by implementing a variational Bayes scheme. Our approach enables simultaneous estimation of group‐specific networks and selection of relevant covariate effects. We show improved performance over competing two‐stage approaches on simulated data. We apply our method on resting‐state functional magnetic resonance imaging data from children with a history of traumatic brain injury (TBI) and healthy controls to estimate the effects of age and sex on the group‐level connectivities. Our results highlight differences in the distribution of parent nodes. They also suggest alteration in the relation of age, with peak edge strength in children with TBI, and differences in effective connectivity strength between males and females. 
    more » « less
  4. Abstract In this work, we focus on explicitly nonlinear relationships in functional networks. We introduce a technique using normalized mutual information (NMI) that calculates the nonlinear relationship between different brain regions. We demonstrate our proposed approach using simulated data and then apply it to a dataset previously studied by Damaraju et al. This resting‐state fMRI data included 151 schizophrenia patients and 163 age‐ and gender‐matched healthy controls. We first decomposed these data using group independent component analysis (ICA) and yielded 47 functionally relevant intrinsic connectivity networks. Our analysis showed a modularized nonlinear relationship among brain functional networks that was particularly noticeable in the sensory and visual cortex. Interestingly, the modularity appears both meaningful and distinct from that revealed by the linear approach. Group analysis identified significant differences in explicitly nonlinear functional network connectivity (FNC) between schizophrenia patients and healthy controls, particularly in the visual cortex, with controls showing more nonlinearity (i.e., higher normalized mutual information between time courses with linear relationships removed) in most cases. Certain domains, including subcortical and auditory, showed relatively less nonlinear FNC (i.e., lower normalized mutual information), whereas links between the visual and other domains showed evidence of substantial nonlinear and modular properties. Overall, these results suggest that quantifying nonlinear dependencies of functional connectivity may provide a complementary and potentially important tool for studying brain function by exposing relevant variation that is typically ignored. Beyond this, we propose a method that captures both linear and nonlinear effects in a “boosted” approach. This method increases the sensitivity to group differences compared to the standard linear approach, at the cost of being unable to separate linear and nonlinear effects. 
    more » « less
  5. This article seeks to investigate the impact of aging on functional connectivity across different cognitive control scenarios, particularly emphasizing the identification of brain regions significantly associated with early aging. By conceptualizing functional connectivity within each cognitive control scenario as a graph, with brain regions as nodes, the statistical challenge revolves around devising a regression framework to predict a binary scalar outcome (aging or normal) using multiple graph predictors. Popular regression methods utilizing multiplex graph predictors often face limitations in effectively harnessing information within and across graph layers, leading to potentially less accurate inference and predictive accuracy, especially for smaller sample sizes. To address this challenge, we propose the Bayesian Multiplex Graph Classifier (BMGC). Accounting for multiplex graph topology, our method models edge coefficients at each graph layer using bilinear interactions between the latent effects associated with the two nodes connected by the edge. This approach also employs a variable selection framework on node-specific latent effects from all graph layers to identify influential nodes linked to observed outcomes. Crucially, the proposed framework is computationally efficient and quantifies the uncertainty in node identification, coefficient estimation, and binary outcome prediction. BMGC outperforms alternative methods in terms of the aforementioned metrics in simulation studies. An additional BMGC validation was completed using an fMRI study of brain networks in adults. The proposed BMGC technique identified that sensory motor brain network obeys certain lateral symmetries, whereas the default mode network exhibits significant brain asymmetries associated with early aging. 
    more » « less