skip to main content


Title: Palomar discovery and initial characterization of naked-eye long-period comet C/2022 E3 (ZTF)
ABSTRACT

Long-period comets are planetesimal remnants constraining the environment and volatiles of the protoplanetary disc. We report the discovery of hyperbolic long-period comet C/2022 E3 Zwicky Transient Facility (ZTF), which has a perihelion ∼1.11 au, an eccentricity ≳1 and an inclination ∼109°, from images taken with the Palomar 48-inch telescope during morning twilight on 2022 March 2. Additionally, we report the characterization of C/2022 E3 (ZTF) from observations taken with the Palomar 200-inch, the Palomar 60-inch, and the NASA Infrared Telescope Facility in early 2023 February to 2023 March when the comet passed within ∼0.28 au of the Earth and reached a visible magnitude of ∼5. We measure g–r = 0.70 ± 0.01, r–i = 0.20 ± 0.01, i–z = 0.06 ± 0.01, z–J = 0.90 ± 0.01, J–H = 0.38 ± 0.01, and H–K = 0.15 ± 0.01 colours for the comet from observations. We measure the A(0°)fρ (0.8 μm) in a 6500 km radius from the nucleus of 1483 ± 40 cm, and CN, C3, and C2 production of 5.43 ± 0.11 × 1025, 2.01 ± 0.04 × 1024, and 3.08 ± 0.5 × 1025 mol s−1, similar to other long-period comets. We additionally observe the appearance of jet-like structures at a scale of ∼4000 km in wide-field g-band images, which may be caused by the presence of CN gas in the near-nucleus coma.

 
more » « less
NSF-PAR ID:
10468572
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society: Letters
Volume:
527
Issue:
1
ISSN:
1745-3925
Format(s):
Medium: X Size: p. L42-L46
Size(s):
["p. L42-L46"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Manx comets are objects on long-period comet orbits that are inactive as they approach perihelion. They are of particular interest because they may help constrain solar system formation models. 2013 LU28 was discovered as an inactive asteroidal object on 2013 June 8 at a heliocentric distance of 21.8 au. Images and photometric data were obtained of 2013 LU28 from multiple telescopes from pre-discovery data in 2010 until the present. Its spectral reflectivity is consistent with typical organic-rich comet surfaces with colors ofgr= 0.97 ± 0.02,ri= 0.43 ± 0.02, andrz= 0.65 ± 0.03, corresponding to a spectral reflectivity slope of 30 ± 3%/100 nm. There is no obvious indication of dust coma in deep stacked images. We estimate the nucleus radius to be ∼55.7 ± 0.3 km assuming an albedo of 4%. This is much smaller than the 1σupper limits on the nucleus size of 79.9 km from the NEOWISE survey assuming the same albedo, since the NEOWISE survey is not very sensitive to objects this small at this distance. The heliocentric light curve suggests possible activity betweenr∼ 17 and 13 au where 2013 LU28 is brighter than expected. This is consistent with outgassing from CO or CO2. Using surface brightness profiles, we estimate an upper limit of ∼0.01 kg s−1for micron-sized dust that can be produced without us detecting it for the inactive portion of the light curve, and upper limits of ∼1 kg s−1for CO and ∼1.5 kg s−1for CO2between 20 and 14.7 au.

     
    more » « less
  2. Abstract

    Manx objects approach the inner solar system on long-period comet (LPC) orbits with the consequent high inbound velocities, but unlike comets, Manxes display very little to no activity even near perihelion. This suggests that they may have formed in circumstances different from typical LPCs; moreover, this lack of significant activity also renders them difficult to detect at large distances. Thus, analyzing their physical properties can help constrain models of solar system formation as well as sharpen detection methods for those classified as NEOs. Here, we focus on the Manx candidate A/2018 V3 as part of a larger effort to characterize Manxes as a whole. This particular object was observed to be inactive even at its perihelion atq= 1.34 au in 2019 September. Its spectral reflectivity is consistent with typical organic-rich comet surfaces with colors ofgr=0.67±0.02,ri=0.26±0.02, andrz=0.45±0.02, corresponding to a spectral reflectivity slope of 10.6 ± 0.9%/100 nm. A least-squares fit of our constructed light curve to the observational data yields an average nucleus radius of ≈2 km assuming an albedo of 0.04. This is consistent with the value measured from NEOWISE. A surface brightness analysis for data taken 2020 July 13 indicated possible low activity (≲0.68 g s−1), but not enough to lift optically significant amounts of dust. Finally, we discuss Manxes as a constraint on solar system dynamical models as well as their implications for planetary defense.

     
    more » « less
  3. We present optical and infrared (IR) light curves of the enshrouded massive binary NaSt1 (WR 122) with observations from Palomar Gattini-IR (PGIR), the Zwicky Transient Facility (ZTF), the Katzman Automatic Imaging Telescope (KAIT), and the All-Sky Automated Survey for Supernovae (ASAS-SN). The optical and IR light curves span between 2014 July and 2020 Oct., revealing periodic, sinusoidal variability from NaSt1 with a P=305.2±1.0 d period. We also present historical IR light curves taken between 1983 July and 1989 May that also indicate NaSt1 exhibits long-term IR variability on timescales of ∼decades. Fixed-period sinusoidal fits to the recent optical and IR light curves show that amplitude of NaSt1's variability is different at different wavelengths and also reveal significant phase offsets of ∼18 d between the ZTF r and PGIR J light curves.We interpret the ∼300 d period of the observed variability as the orbital period of a binary system in NaSt1. Assuming a circular orbit and adopting a range of combined stellar mass values in the range 20-100 M⊙ in NaSt1, we estimate orbital separations of ∼2-4 au. We suggest that the sinusoidal photometric variability of NaSt1 may arise from variations in the line-of-sight optical depth toward circumstellar optical/IR emitting regions throughout its orbit due to colliding-wind dust formation. We provide an interpretation on the nature of NaSt1 and speculate that the mass-transfer process may have been triggered by Roche-lobe overflow (RLOF) during an eruptive phase of a Ofpe/WN9 star. Lastly, we claim that NaSt1 ceased RLOF mass transfer ≲3400 yr ago. 
    more » « less
  4. Abstract

    We report production rates of H2O and nine trace molecules (C2H6, CH4, H2CO, CH3OH, HCN, NH3, C2H2, OCS, and CO) in long-period comet C/2020 S3 (Erasmus) using the high-resolution, cross-dispersed infrared spectrograph (iSHELL) at the NASA Infrared Telescope Facility, on two pre-perihelion dates at heliocentric distancesRh= 0.49 and 0.52 au. Our molecular abundances with respect to simultaneously or contemporaneously measured H2O indicate that S3 is depleted in CH3OH compared to its mean abundance relative to H2O among the overall comet population (Oort Cloud comets and Jupiter-family comets combined), whereas the eight other measured species have near-average abundances relative to H2O. In addition, compared to comets observed atRh< 0.80 au at near-infrared wavelengths, S3 showed enhancement in the abundances of volatile species H2CO, NH3, and C2H2, indicating possible additional (distributed) sources in the coma for these volatile species. The spatial profiles of volatile species in S3 in different instrumental settings are dramatically different, which might suggest temporal variability in comet outgassing behavior between the nonsimultaneous measurements. The spatial distributions of simultaneously measured volatile species C2H6and CH4are nearly symmetric and closely track each other, while those of CO and HCN co-measured with H2O (using different instrument settings) are similar to each other and are asymmetric in the antisunward direction.

     
    more » « less
  5. Abstract

    The Zwicky Transient Facility (ZTF), a public–private enterprise, is a new time-domain survey employing a dedicated camera on the Palomar 48-inch Schmidt telescope with a 47 deg2field of view and an 8 second readout time. It is well positioned in the development of time-domain astronomy, offering operations at 10% of the scale and style of the Large Synoptic Survey Telescope (LSST) with a single 1-m class survey telescope. The public surveys will cover the observable northern sky every three nights ingandrfilters and the visible Galactic plane every night ingandr. Alerts generated by these surveys are sent in real time to brokers. A consortium of universities that provided funding (“partnership”) are undertaking several boutique surveys. The combination of these surveys producing one million alerts per night allows for exploration of transient and variable astrophysical phenomena brighter thanr ∼ 20.5 on timescales of minutes to years. We describe the primary science objectives driving ZTF, including the physics of supernovae and relativistic explosions, multi-messenger astrophysics, supernova cosmology, active galactic nuclei, and tidal disruption events, stellar variability, and solar system objects.

     
    more » « less