skip to main content


This content will become publicly available on August 24, 2024

Title: Resonance Raman spectra and excited state properties of methyl viologen and its radical cation from time‐dependent density functional theory
Abstract

Time‐dependent density functional theory (TDDFT) was applied to gain insights into the electronic and vibrational spectroscopic properties of an important electron transport mediator, methyl viologen (MV2+). An organic dication, MV2+has numerous applications in electrochemistry that include energy conversion and storage, environmental remediation, and chemical sensing and electrosynthesis. MV2+is easily reduced by a single electron transfer to form a radical cation species (MV•+), which has an intense UV–visible absorption near 600 nm. The redox properties of the MV2+/MV•+couple and light‐sensitivity of MV•+have made the system appealing for photo‐electrochemical energy conversion (e.g., solar hydrogen generation from water) and the study of photo‐induced charge transfer processes through electronic absorption and resonance Raman spectroscopic measurements. The reported work applies leading TDDFT approaches to investigate the electronic and vibrational spectroscopic properties of MV2+and MV•+. Using a conventional hybrid exchange functional (B3‐LYP) and a long‐range corrected hybrid exchange functional (ωB97X‐D3), including with a conductor‐like polarizable continuum model to account for solvation, the electronic absorption and resonance Raman spectra predicted are in good agreement with experiment. Also analyzed are the charge transfer character and natural transition orbitals derived from the TDDFT vertical excitations calculated. The findings and models developed further the understanding of the electronic properties of viologens and related organic redox mediators important in renewable energy applications and serve as a reference for guiding the interpretation of electronic absorption and Raman spectra of the ions.

 
more » « less
NSF-PAR ID:
10468658
Author(s) / Creator(s):
 ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
44
Issue:
31
ISSN:
0192-8651
Format(s):
Medium: X Size: p. 2414-2423
Size(s):
p. 2414-2423
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    A series of complexes with low-energy Fe II to Ti IV metal-to-metal charge-transfer (MMCT) transitions, Cp 2 Ti(C 2 Fc) 2 , Cp* 2 Ti(C 2 Fc) 2 , and MeOOC Cp 2 Ti(C 2 Fc) 2 , was investigated using solvatochromism and resonance Raman spectroscopy (RRS) augmented with time-dependent density functional theory (TDDFT) calculations in order to interrogate the nature of the CT transitions. Computational models were benchmarked against the experimental UV-Vis spectra and B3LYP/6-31G(d) was found to most faithfully represent the spectra. The energy of the MMCT transition was measured in 15 different solvents and a multivariate fit to the Catalán solvent parameters – solvent polarizability (SP), solvent dipolarity (SdP), solvent basicity (SB), and solvent acidity (SA) – was performed. The effect of SP indicates a greater degree of electron delocalization in the excited state (ES) than the ground state (GS). The small negative solvatochromism with respect to SdP indicates a smaller dipole moment in the ES than the GS. The effect of SB is consistent with charge-transfer to Ti. Upon excitation into the MMCT absorption band, the RRS data show enhancement of the alkyne stretching modes and of the out-of-plane bending modes of the cyclopentadienyl ring connected to Fe and the alkyne bridge. This is consistent with changes in the oxidation states of Ti and Fe, respectively. The higher-energy transitions (350–450 nm) show enhancement of vibrational modes consistent with ethnylcyclopentadienyl to Ti ligand-to-metal charge transfer (LMCT). The RRS data is consistent with the TDDFT predicted character of these transitions. TDDFT suggests that the lowest-energy transition in Cp 2 Ti(C 2 Fc) 2 CuI, where CuI is coordinated between the alkynes, retains its Fe II to Ti IV MMCT character, in agreement with the RRS data, but that the lowest-energy transitions have significant CuI to Ti character. For Cp 2 Ti(C 2 Fc) 2 CuI, excitation into the low-energy MMCT absorption band results in selective enhancement of the symmetric alkynyl stretching mode. 
    more » « less
  2. null (Ed.)
    Metal–organic frameworks (MOFs) have emerged as promising porous optoelectronic compositions for energy conversion and sensing applications. The enormous structural possibilities, the large variety of photo- and redox-active building blocks along with several post-synthetic functionalization strategies make MOFs an ideal platform for photochemical and photoelectrochemical developments. Because MOFs assemble all the active building units in a dense fashion, the non-aggregated yet proximally positioned species ensure efficient photon absorption to drive photoinduced charge transfer (PCT) reactions for energy conversion and sensing. Hence, understanding the PCT processes within MOFs as a function of the topological and electronic structures of the donor–acceptor (D–A) moieties can provide transformative strategies to design new low-density compositions. 
    more » « less
  3. Abstract

    The preparation of radicals with intense and redox‐switchable absorption beyond 1000 nm is a long‐standing challenge in the chemistry of functional dyes. Here we report the preparation of a series of unprecedented stable neutral nickel(II) and copper(II) complexes of “Manitoba dipyrromethenes” (MB‐DIPYs) in which the organic chromophore is present in the radical‐anion state. The new stable radicals have an intense absorption atλmax∼1300 nm and can be either oxidized to regular [MII(MB‐DIPY)]+(M=Cu or Ni) or reduced to [MII(MB‐DIPY)]compounds. The radical nature of the stable [MII(MB‐DIPY)] complexes was confirmed by EPR spectroscopy with additional insight into their electronic structure obtained by UV‐Vis spectroscopy, electro‐ and spectroelectrochemistry, magnetic measurements, and X‐ray crystallography. The electronic structures and spectroscopic properties of the radical‐based chromophores were also probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations. These nickel(II) and copper(II) complexes represent the first stable radical compounds with a MB‐DIPY ligand.

     
    more » « less
  4. Abstract

    Electron–phonon interactions play an essential role in charge transport and transfer processes in semiconductors. For most structures, tailoring electron–phonon interactions for specific functionality remains elusive. Here, it is shown that, in hybrid perovskites, coherent phonon modes can be used to manipulate charge transfer. In the 2D double perovskite, (AE2T)2AgBiI8(AE2T: 5,5“‐diylbis(amino‐ethyl)‐(2,2”‐(2)thiophene)), the valence band maximum derived from the [Ag0.5Bi0.5I4]2–framework lies in close proximity to the AE2T‐derived HOMO level, thereby forming a type‐II heterostructure. During transient absorption spectroscopy, pulsed excitation creates sustained coherent phonon modes, which periodically modulate the associated electronic levels. Thus, the energy offset at the organic–inorganic interface also oscillates periodically, providing a unique opportunity for modulation of interfacial charge transfer. Density‐functional theory corroborates the mechanism and identifies specific phonon modes as likely drivers of the coherent charge transfer. These observations are a striking example of how electron–phonon interactions can be used to manipulate fundamentally important charge and energy transfer processes in hybrid perovskites.

     
    more » « less
  5. Abstract

    A mononuclear nonheme manganese(IV)–oxo complex binding the Ce4+ion, [(dpaq)MnIV(O)]+–Ce4+(1‐Ce4+), was synthesized by reacting [(dpaq)MnIII(OH)]+(2) with cerium ammonium nitrate (CAN).1‐Ce4+was characterized using various spectroscopic techniques, such as UV/Vis, EPR, CSI‐MS, resonance Raman, XANES, and EXAFS, showing an Mn−O bond distance of 1.69 Å with a resonance Raman band at 675 cm−1. Electron‐transfer and oxygen atom transfer reactivities of1‐Ce4+were found to be greater than those of MnIV(O) intermediates binding redox‐inactive metal ions (1‐Mn+). This study reports the first example of a redox‐active Ce4+ion‐bound MnIV‐oxo complex and its spectroscopic characterization and chemical properties.

     
    more » « less