skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


This content will become publicly available on January 5, 2026

Title: Influence of Ligand Complexity on the Spectroscopic Properties of Type 1 Copper Sites: A Theoretical Study
ABSTRACT Multi‐copper oxidases (MCOs) are enzymes of significant interest in biotechnology due to their efficient catalysis of oxygen reduction to water, making them valuable in sustainable energy production and bio‐electrochemical applications. This study employs time‐dependent density functional theory (TDDFT) to investigate the electronic structure and spectroscopic properties of the Type 1 (T1) copper site in Azurin, which serves as a model for similar sites in MCOs. Four model complexes of varying complexity were derived from the T1 site, including 3 three‐coordinate models and 1 four‐coordinate model with axial methionine ligation, to explore the impact of molecular branches and axial coordination. Calculations using ωB97X‐D3 functional, def2‐TZVP basis set, and conductor‐like polarizable continuum model (CPCM) solvation model reproduced key experimental spectral features, with increased model complexity improving agreement, particularly for the ~400 cm−1band splitting in resonance Raman spectra. This work enhances our understanding of T1 copper sites' electronic properties and spectra, bridging the gap between simplified models and complex proteins. The findings contribute to the interpretation of spectroscopic data in blue copper proteins and may inform future studies on similar biological systems.  more » « less
Award ID(s):
1922956
PAR ID:
10568648
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Journal of Computational Chemistry
Volume:
46
Issue:
1
ISSN:
0192-8651
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Time‐dependent density functional theory (TDDFT) was applied to gain insights into the electronic and vibrational spectroscopic properties of an important electron transport mediator, methyl viologen (MV2+). An organic dication, MV2+has numerous applications in electrochemistry that include energy conversion and storage, environmental remediation, and chemical sensing and electrosynthesis. MV2+is easily reduced by a single electron transfer to form a radical cation species (MV•+), which has an intense UV–visible absorption near 600 nm. The redox properties of the MV2+/MV•+couple and light‐sensitivity of MV•+have made the system appealing for photo‐electrochemical energy conversion (e.g., solar hydrogen generation from water) and the study of photo‐induced charge transfer processes through electronic absorption and resonance Raman spectroscopic measurements. The reported work applies leading TDDFT approaches to investigate the electronic and vibrational spectroscopic properties of MV2+and MV•+. Using a conventional hybrid exchange functional (B3‐LYP) and a long‐range corrected hybrid exchange functional (ωB97X‐D3), including with a conductor‐like polarizable continuum model to account for solvation, the electronic absorption and resonance Raman spectra predicted are in good agreement with experiment. Also analyzed are the charge transfer character and natural transition orbitals derived from the TDDFT vertical excitations calculated. The findings and models developed further the understanding of the electronic properties of viologens and related organic redox mediators important in renewable energy applications and serve as a reference for guiding the interpretation of electronic absorption and Raman spectra of the ions. 
    more » « less
  2. Type 1 copper (T1Cu) proteins play important roles in electron transfer in biology, largely due to the unique structure of the T1Cu center, which is reflected by its spectroscopic properties. Previous reports have suggested a correlation between a high ratio of electronic absorbance at ∼450 nm to that at ∼600 nm (R = A450/A600) and a large copper(II) hyperfine coupling in the z direction (Az) in electron paramagnetic resonance (EPR). However, this correlation does not have a clear physical meaning, nor does it hold for many proteins with a perturbed T1Cu center. To address this issue, a new parameter of R′ [A450/(A450 + A600)] with a better physical meaning of a fractional SCys pseudo-σ to Cu(II) charge transfer transition intensity is defined and a quadratic relationship between R′ and Az is found on the basis of a comprehensive analysis of ultraviolet–visible absorption, EPR, and structural parameters of T1Cu proteins. We are able to find good correlations between R′ and the displacement of copper from the trigonal plane defined by the His2Cys ligands and the angle between the NHis1–Cu–NHis2 plane and the SCys–Cu–axial ligand plane, providing a structural basis for the observed correlation. These findings and analyses provide a new framework for a deeper understanding of the spectroscopic and electronic properties of T1Cu proteins, which may allow better design and applications of this important class of proteins for redox and electron transfer functions. 
    more » « less
  3. Abstract The preparation of radicals with intense and redox‐switchable absorption beyond 1000 nm is a long‐standing challenge in the chemistry of functional dyes. Here we report the preparation of a series of unprecedented stable neutral nickel(II) and copper(II) complexes of “Manitoba dipyrromethenes” (MB‐DIPYs) in which the organic chromophore is present in the radical‐anion state. The new stable radicals have an intense absorption atλmax∼1300 nm and can be either oxidized to regular [MII(MB‐DIPY)]+(M=Cu or Ni) or reduced to [MII(MB‐DIPY)]compounds. The radical nature of the stable [MII(MB‐DIPY)] complexes was confirmed by EPR spectroscopy with additional insight into their electronic structure obtained by UV‐Vis spectroscopy, electro‐ and spectroelectrochemistry, magnetic measurements, and X‐ray crystallography. The electronic structures and spectroscopic properties of the radical‐based chromophores were also probed by density functional theory (DFT) and time‐dependent DFT (TDDFT) calculations. These nickel(II) and copper(II) complexes represent the first stable radical compounds with a MB‐DIPY ligand. 
    more » « less
  4. Abstract To predict ecological responses at broad environmental scales, grass species are commonly grouped into two broad functional types based on photosynthetic pathway. However, closely related species may have distinctive anatomical and physiological attributes that influence ecological responses, beyond those related to photosynthetic pathway alone. Hyperspectral leaf reflectance can provide an integrated measure of covarying leaf traits that may result from phylogenetic trait conservatism and/or environmental conditions. Understanding whether spectra‐trait relationships are lineage specific or reflect environmental variation across sites is necessary for using hyperspectral reflectance to predict plant responses to environmental changes across spatial scales. We measured hyperspectral leaf reflectance (400–2400 nm) and 12 structural, biochemical, and physiological leaf traits from five grass‐dominated sites spanning the Great Plains of North America. We assessed if variation in leaf reflectance spectra among grass species is explained more by evolutionary lineage (as captured by tribes or subfamilies), photosynthetic pathway (C3or C4), or site differences. We then determined whether leaf spectra can be used to predict leaf traits within and across lineages. Our results using redundancy analysis ordination (RDA) show that grass tribe identity explained more variation in leaf spectra (adjustedR2 = 0.12) than photosynthetic pathway, which explained little variation in leaf spectra (adjustedR2 = 0.00). Furthermore, leaf reflectance from the same tribe across multiple sites was more similar than leaf reflectance from the same site across tribes (adjustedR2 = 0.12 and 0.08, respectively). Across all sites and species, trait predictions based on spectra ranged considerably in predictive accuracies (R2 = 0.65 to <0.01), butR2was >0.80 for certain lineages and sites. The relationship between Vcmax, a measure of photosynthetic capacity, and spectra was particularly promising. Chloridoideae, a lineage more common at drier sites, appears to have distinct spectra‐trait relationships compared with other lineages. Overall, our results show that evolutionary relatedness explains more variation in grass leaf spectra than photosynthetic pathway or site, but consideration of lineage‐ and site‐specific trait relationships is needed to interpret spectral variation across large environmental gradients. 
    more » « less
  5. Abstract With the aim of constructing hydrogen‐bonding networks in synthetic complexes, two new ligands derived fromcis,cis‐1,3,5‐triaminocyclohexane (TACH) have been prepared that feature pendant pyrrole or indole rings as outer‐sphere H‐bond donors. The TACH framework offers a facial arrangement of threeN‐donors, thereby mimicking common coordination motifs in the active sites of nonheme Fe and Cu enzymes. X‐ray structural characterization of a series of CuI‐X complexes (X=F, Cl, Br, NCS) revealed that these neutral ligands (H3LR, R=pyrrole or indole) coordinate in the intended facialN3manner, yielding four‐coordinate complexes with idealizedC3symmetry. The N−H units of the outer‐sphere heterocycles form a hydrogen‐bonding cavity around the axial (pseudo)halide ligand, as verified by crystallographic, spectroscopic, and computational analyses. Treatment of H3Lpyrroleand H3Lindolewith divalent transition metal chlorides (MIICl2, M=Fe, Cu, Zn) causes one heterocycle to deprotonate and coordinate to the M(II) center, giving rise to tetradentate ligands with two remaining outer‐sphere H‐bond donors. Further ligand deprotonation is observed upon reaction with Ni(II) and Cu(II) salts with weakly coordinating counteranions. The reported complexes highlight the versatility of TACH‐based ligands with pendant H‐bond donors, as the resulting scaffolds can support multiple protonation states, coordination geometries, and H‐bonding interactions. 
    more » « less