skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: High-order strongly nonlinear long wave approximation and solitary wave solution. Part 2. Internal waves
A strongly nonlinear long-wave approximation is adopted to obtain a high-order model for large-amplitude long internal waves in a two-layer system by assuming the water depth is much smaller than the typical wavelength. When truncated at the first order, the model can be reduced to the regularized strongly nonlinear model of Choiet al.(J. Fluid Mech., vol. 629, 2009, pp. 73–85), which lessens the Kelvin–Helmholtz instability excited by the tangential velocity jump across the interface in the inviscid Miyata–Choi–Camassa (MCC) equations. Using the second-order model, the next-order correction to the internal solitary wave solution of the MCC equations is found and its validity is examined with the Euler solution in terms of the wave profile, the effective wavelength and the velocity profile. It is shown that the correction greatly improves the comparison with the Euler solution for the whole range of wave amplitudes and no further correction is necessary for practical applications. Based on a local stability analysis, the region of stability for the second-order long-wave model is identified in the physical parameter space so that the efficient numerical scheme developed for the first-order model can be used for the second-order model.  more » « less
Award ID(s):
2108524
PAR ID:
10468732
Author(s) / Creator(s):
Publisher / Repository:
Cambridge University Press
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
952
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider high-order strongly nonlinear long wave models expanded in a single small parameter measuring the ratio of the water depth to the characteristic wavelength. By examining its dispersion relation, the high-order system for the bottom velocity is found stable to all disturbances at any order of approximation. On the other hand, systems for other velocities can be unstable and even ill-posed, as signified by the unbounded maximum growth. Under the steady assumption, a new third-order solitary wave solution of the Euler equations is obtained using the high-order strongly nonlinear system and is expanded in an amplitude parameter, which is different from that used in weakly nonlinear theory. The third-order solution is shown to well describe various physical quantities induced by a finite-amplitude solitary wave, including the wave profile, horizontal velocity profile, particle velocity at the crest and bottom pressure. For numerical computations, the first- and second-order strongly nonlinear systems for the bottom velocity are considered. It is shown that finite difference schemes are unstable due to truncation errors introduced in approximating high-order spatial derivatives and, therefore, a more accurate spatial discretization scheme is necessary. Using a pseudo-spectral method based on finite Fourier series combined with an iterative scheme for the inversion of a non-local operator, the strongly nonlinear systems are solved numerically for the propagation of a single solitary wave and the head-on collision of two counter-propagating solitary waves of finite amplitudes, and the results are compared with previous laboratory measurements. 
    more » « less
  2. We consider a strongly nonlinear long wave model for large amplitude internal waves in a three-layer flow between two rigid boundaries. The model extends the two-layer Miyata–Choi–Camassa (MCC) model (Miyata, Proceedings of the IUTAM Symposium on Nonlinear Water Waves , eds. H. Horikawa & H. Maruo, 1988, pp. 399–406; Choi & Camassa, J. Fluid Mech. , vol. 396, 1999, pp. 1–36) and is able to describe the propagation of long internal waves of both the first and second baroclinic modes. Solitary-wave solutions of the model are shown to be governed by a Hamiltonian system with two degrees of freedom. Emphasis is given to the solitary waves of the second baroclinic mode (mode 2) and their strongly nonlinear characteristics that fail to be captured by weakly nonlinear models. In certain asymptotic limits relevant to oceanic applications and previous laboratory experiments, it is shown that large amplitude mode-2 waves with single-hump profiles can be described by the solitary-wave solutions of the MCC model, originally developed for mode-1 waves in a two-layer system. In other cases, however, e.g. when the density stratification is weak and the density transition layer is thin, the richness of the dynamical system with two degrees of freedom becomes apparent and new classes of mode-2 solitary-wave solutions of large amplitudes, characterized by multi-humped wave profiles, can be found. In contrast with the classical solitary-wave solutions described by the MCC equation, such multi-humped solutions cannot exist for a continuum set of wave speeds for a given layer configuration. Our analytical predictions based on asymptotic theory are then corroborated by a numerical study of the original Hamiltonian system. 
    more » « less
  3. We consider a [Formula: see text] system of hyperbolic balance laws that is the converted form under inverse Hopf–Cole transformation of a Keller–Segel type chemotaxis model. We study Cauchy problem when Cauchy data connect two different end-states as [Formula: see text]. The background wave is a diffusive contact wave of the reduced system. We establish global existence of solution and study the time asymptotic behavior. In the special case where the cellular population initially approaches its stable equilibrium value as [Formula: see text], we obtain nonlinear stability of the diffusive contact wave under smallness assumption. In the general case where the population initially does not approach to its stable equilibrium value at least at one of the far fields, we use a correction function in the time asymptotic ansatz, and show that the population approaches logistically to its stable equilibrium value. Our result shows two significant differences when comparing to Euler equations with damping. The first one is the existence of a secondary wave in the time asymptotic ansatz. This implies that our solutions converge to the diffusive contact wave slower than those of Euler equations with damping. The second one is that the correction function logistically grows rather than exponentially decays. 
    more » « less
  4. null (Ed.)
    Inspired by the numerical evidence of a potential 3D Euler singularity by Luo- Hou [30,31] and the recent breakthrough by Elgindi [11] on the singularity formation of the 3D Euler equation without swirl with $$C^{1,\alpha}$$ initial data for the velocity, we prove the finite time singularity for the 2D Boussinesq and the 3D axisymmetric Euler equations in the presence of boundary with $$C^{1,\alpha}$$ initial data for the velocity (and density in the case of Boussinesq equations). Our finite time blowup solution for the 3D Euler equations and the singular solution considered in [30,31] share many essential features, including the symmetry properties of the solution, the flow structure, and the sign of the solution in each quadrant, except that we use $$C^{1,\alpha}$$ initial data for the velocity field. We use a dynamic rescaling formulation and follow the general framework of analysis developed by Elgindi in [11]. We also use some strategy proposed in our recent joint work with Huang in [7] and adopt several methods of analysis in [11] to establish the linear and nonlinear stability of an approximate self-similar profile. The nonlinear stability enables us to prove that the solution of the 3D Euler equations or the 2D Boussinesq equations with $$C^{1,\alpha}$$ initial data will develop a finite time singularity. Moreover, the velocity field has finite energy before the singularity time. 
    more » « less
  5. Tobias Ekholm (Ed.)
    We prove nonlinear asymptotic stability of a large class of monotonic shear flows among solutions of the 2D Euler equations in the channel $$\mathbb{T}\times[0,1]$$. More precisely, we consider shear flows $(b(y),0)$ given by a function $$b$$ which is Gevrey smooth, strictly increasing, and linear outside a compact subset of the interval $(0,1)$ (to avoid boundary contributions which are incompatible with inviscid damping). We also assume that the associated linearized operator satisfies a suitable spectral condition, which is needed to prove linear inviscid damping. Under these assumptions, we show that if $$u$$ is a solution which is a small and Gevrey smooth perturbation of such a shear flow $(b(y),0)$ at time $t=0$, then the velocity field $$u$$ converges strongly to a nearby shear flow as the time goes to infinity. This is the first nonlinear asymptotic stability result for Euler equations around general steady solutions for which the linearized flow cannot be explicitly solved. 
    more » « less