Abstract We study tight projective 2‐designs in three different settings. In the complex setting, Zauner's conjecture predicts the existence of a tight projective 2‐design in every dimension. Pandey, Paulsen, Prakash, and Rahaman recently proposed an approach to make quantitative progress on this conjecture in terms of the entanglement breaking rank of a certain quantum channel. We show that this quantity is equal to the size of the smallest weighted projective 2‐design. Next, in the finite field setting, we introduce a notion of projective 2‐designs, we characterize when such projective 2‐designs are tight, and we provide a construction of such objects. Finally, in the quaternionic setting, we show that every tight projective 2‐design for determines an equi‐isoclinic tight fusion frame of subspaces of of dimension 3.
more »
« less
Projective Compactification of Dolbeault Moduli Spaces
Abstract We construct a relative projective compactification of Dolbeault moduli spaces of Higgs bundles for reductive algebraic groups on families of projective manifolds that is compatible with the Hitchin morphism.
more »
« less
- Award ID(s):
- 1901975
- PAR ID:
- 10468739
- Publisher / Repository:
- Advance Access Publication
- Date Published:
- Journal Name:
- International Mathematics Research Notices
- Volume:
- 2021
- Issue:
- 5
- ISSN:
- 1073-7928
- Page Range / eLocation ID:
- 3543 to 3570
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract For a simple, simply connected complex affine algebraic group 𝐺, we prove the existence of a flat projective connection on the bundle of nonabelian theta functions on the moduli spaces of semistable parabolic 𝐺-bundles for families of smooth projective curves with marked points.more » « less
-
Abstract We provide a complete classification of Teichmüller curves occurring in hyperelliptic components of the meromorphic strata of differentials. Using a non-existence criterion based on how Teichmüller curves intersect the boundary of the moduli space we derive a contradiction to the algebraicity of any candidate outside of Hurwitz covers of strata with projective dimension one, and Hurwitz covers of zero residue loci in strata with projective dimension two.more » « less
-
Abstract We develop a Hodge theoretic invariant for families of projective manifolds that measures the potential failure of an Arakelov-type inequality in higher dimensions, one that naturally generalizes the classical Arakelov inequality over regular quasi-projective curves.We show that, for families of manifolds with ample canonical bundle, this invariant is uniformly bounded.As a consequence, we establish that such families over a base of arbitrary dimension satisfy the aforementioned Arakelov inequality, answering a question of Viehweg.more » « less
-
Abstract Projective varieties with ample cotangent bundle satisfy many notions of hyperbolicity, and one goal of this paper is to discuss generalizations to quasi-projective varieties. A major hurdle is that the naive generalization is false—the log cotangent bundle is never ample. Instead, we define a notion called almost ample that roughly asks that it is as positive as possible. We show that all subvarieties of a quasi-projective variety with almost ample log cotangent bundle are of log general type. In addition, if one assumes globally generated then we obtain that such varieties contain finitely many integral points. In another direction, we show that the Lang–Vojta conjecture implies the number of stably integral points on curves of log general type, and surfaces of log general type with almost ample log cotangent sheaf are uniformly bounded.more » « less
An official website of the United States government

