skip to main content


This content will become publicly available on May 31, 2024

Title: Neural Koopman Control Barrier Functions for Safety-Critical Control of Unknown Nonlinear Systems
Award ID(s):
1937957
NSF-PAR ID:
10468756
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
Page Range / eLocation ID:
3442 to 3447
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. In this paper, the issue of model uncertainty in safety-critical control is addressed with a data-driven approach. For this purpose, we utilize the structure of an input-output linearization controller based on a nominal model along with a Control Barrier Function and Control Lyapunov Function based Quadratic Program (CBF-CLF-QP). Specifically, we propose a novel reinforcement learning framework which learns the model uncertainty present in the CBF and CLF constraints, as well as other control-affine dynamic constraints in the quadratic program. The trained policy is combined with the nominal model based CBF-CLF-QP, resulting in the Reinforcement Learning based CBF-CLF-QP (RL-CBF-CLF-QP), which addresses the problem of model uncertainty in the safety constraints. The performance of the proposed method is validated by testing it on an underactuated nonlinear bipedal robot walking on randomly spaced stepping stones with one step preview, obtaining stable and safe walking under model uncertainty. 
    more » « less
  2. null (Ed.)
    The Current practice of air-fuel ratio control relies on empirical models and traditional PID controllers, which require extensive calibration to maintain the post-catalyst air-fuel ratio close to stoichiometry. In contrast, this work utilizes a physics-based Three-Way Catalyst (TWC) model to develop a model predictive control (MPC) strategy for air-fuel ratio control based on internal TWC oxygen storage dynamics. In this paper, parameters of the physics-based temperature and oxygen storage models of the TWC are identified using vehicle test data for a catalyst aged to 150,000 miles. A linearized oxygen storage model is then developed from the identified nonlinear model, which is shown via simulation to follow the nonlinear model with minimal error during nominal operation. This motivates the development of a Linear MPC (LMPC) framework using the linearized TWC oxygen storage model, reducing the requisite computational effort relative to a nonlinear MPC strategy. In this work, the LMPC utilizing a linearized physics-based TWC model is proven suitable for tracking a desired oxygen storage level by controlling the commanded engine air-fuel ratio, which is also a novel contribution. The offline simulation results show successful tracking performance of the developed LMPC framework. 
    more » « less
  3. Networked control systems (NCSs) are designed to control and monitor large-scale and complex systems remotely. The communication connectivity in an NCS allows agents to quickly communicate with each other to respond to abrupt changes in the system quickly, thus reducing complexity and increasing efficiency. Despite all these advantages, NCSs are vulnerable to cyberattacks. Injecting cyberattacks, such as a time-delay switch (TDS) attack, into communication channels has the potential to make NCSs inefficient or even unstable. This paper presents a Lyapunov-based approach to detecting and estimating TDS attacks in real time. A secure control strategy is designed to mitigate the effects of TDS attacks in real time. The stability of the secure control system is investigated using the Lyapunov theory. The proposed TDS attack estimator’s performance and secure control strategy are evaluated in simulations and a hardware-in-the-loop environment.

     
    more » « less