Abstract Covalent attachment of thiols to the tyrosine residues of silk fibroin is accomplished with a high degree of functionalization through the reaction of a pyridyldithiol‐containing N‐hydroxysuccinimidal‐ester and an amino‐tyrosine silk intermediate. The extent of thiol modification is characterized by1H NMR and UV–vis spectroscopy. Further modification of the thiol groups is probed by reacting with an iodoacetamide‐containing small molecule resulting in a novel fluorescent silk derivative. Last, the ability of the thiolated silk to form hydrogels in situ is investigated.
more »
« less
Chemical Modification of Silk Proteins via Palladium‐Mediated Suzuki−Miyaura Reactions
Abstract Suzuki−Miyaura cross‐coupling reactions are used to modify the tyrosine residues onBombyx morisilkworm silk proteins using a water‐soluble palladium catalyst. First, model reactions using tyrosine derivatives are screened to determine optimal reaction conditions. For these reactions, a variety of aryl boronic acids, solvents, buffers, and temperature ranges are explored. Qualitative information on the reaction progress is collected via high‐performance liquid chromatography (HPLC), mass spectrometry (MS), and nuclear magnetic resonance (NMR). Optimized reactions are then applied to silk proteins. It is demonstrated the ability to modify silk fibroin in solution by first iodinating the tyrosine residues on the protein, and then carrying out Suzuki‐Miyaura reactions with a variety of boronic acid derivatives. Modification of silk is confirmed with NMR, ion‐exchange chromatography (IEC), UV‐vis, and infrared spectroscopy (IR).
more »
« less
- Award ID(s):
- 1807878
- PAR ID:
- 10468909
- Publisher / Repository:
- Wiley-VCH GmbH
- Date Published:
- Journal Name:
- Macromolecular Chemistry and Physics
- ISSN:
- 1022-1352
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Palladium-catalyzed Suzuki–Miyaura cross-coupling or aryl halides is widely employed in the synthesis of many important molecules in synthetic chemistry, including pharmaceuticals, polymers and functional materials. Herein, we disclose the first palladium-catalyzed decarbonylative Suzuki–Miyaura cross-coupling of amides for the synthesis of biaryls through the selective activation of the N–C(O) bond of amides. This new method relies on the precise sequence engineering of the catalytic cycle, wherein decarbonylation occurs prior to the transmetallation step. The reaction is compatible with a wide range of boronic acids and amides, providing valuable biaryls in high yields (>60 examples). DFT studies support a mechanism involving oxidative addition, decarbonylation and transmetallation and provide insight into high N–C(O) bond activation selectivity. Most crucially, the reaction establishes the use of palladium catalysis in the biaryl Suzuki–Miyaura cross-coupling of the amide bond and should enable the design of a wide variety of cross-coupling methods in which palladium rivals the traditional biaryl synthesis from aryl halides and pseudohalides.more » « less
-
Controlled preparation of structurally precise complex conjugated polymer systems remains to be a major synthetic challenge still to be addressed, and this push is stimulated by the improved device performance as well as unique fundamental characteristics that the well-defined conjugated polymer materials possess. Catalyst-transfer polymerization (CTP) based on Pd-catalyzed Suzuki-Miyaura cross-coupling reaction is currently one of the most promising methods towards achieving such a goal, especially with the recent implementation of N-methyliminodiacetic acid (MIDA) boronates as monomers in CTP. Further expansion and development of practical applications of CTP methods will hinge on a clear mechanistic understanding of both the entire process and the particular steps involved in the catalytic cycle. In this work, we introduced Ag+-mediated Suzuki-Miyaura CTP and demonstrated that presence of Ag+ shifted a key transmetalation step toward the oxo-Pd pathway, leading to direct participation of MIDA-boronates in the transmetalation step and hence in the polymerization process, and resulting in the overall more efficient polymerization. In addition, we found that, under Ag+-mediated conditions, MIDA-boronates can also directly participate in small-molecule cross-coupling reactions. The direct participation of MIDA-boronates in Suzuki-Miyaura cross-coupling has not been envisaged previously and could enable new interesting possibilities to control this reaction both for small-molecule and macromolecular syntheses. In contrast to MIDA-boronates, boronic acid monomers likely undergo transmetalation through an alternative boronate pathway, although they may also be directed to react via the oxo-Pd transmetalation pathway in Ag+-mediated conditions. The interplay between the two transmetalation pathways which are both involved in the catalyst-transfer polymerization, and the opportunity to selectively enhance one of them not only improves mechanistic understanding of Suzuki-Miyaura CTP process but also provides a previously unexplored possibility to gain more effective control over the polymerization to obtain structurally better-defined conjugated polymers.more » « less
-
A stepwise copper‐catalyzed boracarboxylation then palladium‐catalyzed Suzuki‐Miyaura cross‐coupling methodology was developed to access 2,3‐diarylpropionic acid derivatives regioselectively by pre‐setting the position of the carboxylic acid in the boracarboxylation reaction. This method provides access to a wide range of aryl and heteroaryl products in up to 80% isolated yield. Pharmaceutical potential was demonstrated by synthesizing a glucagon receptor antagonist drug in three steps (31% overall yield) from commercially available 4‐tert‐butylstyrene.more » « less
-
Abstract Chemoselective cross-coupling of phenol derivatives is valuable for generating products that retain halides. Here we discuss recent developments in selective cross-couplings of chloroaryl phenol derivatives, with a particular focus on reactions of chloroaryl tosylates. The first example of a C–O-selective Ni-catalyzed Suzuki–Miyaura coupling of chloroaryl tosylates is discussed in detail. 1 Introduction 2 Density Functional Theory Studies on Oxidative Addition at Nickel(0) 3 Stoichiometric Oxidative Addition Studies 4 Development of a Tosylate-Selective Suzuki Coupling 5 Conclusion and Outlookmore » « less
An official website of the United States government

