skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Ligand and Linkage Isomers of Bis(ethylthiocarbamato) Copper Complexes with Cyclic C 6 H 8 Backbone Substituents: Synthesis, Characterization, and Antiproliferation Activity
Abstract A series of isomeric bis(alkylthiocarbamate) copper complexes have been synthesized, characterized, and evaluated for antiproliferation activity. The complexes were derived from ligand isomers with 3‐methylpentyl (H2L2) and cyclohexyl (H2L3) backbone substituents, which each yield a pair of linkage isomers. The thermodynamic products CuL2a/3ahave two imino N and two S donors resulting in three five‐member chelate rings (555 isomers). The kinetic isomers CuL2b/3bhave one imino and one hydrazino N donor and two S donors resulting in four‐, six‐, and five‐member rings (465 isomers). The 555 isomers have more accessible CuII/Ipotentials (E1/2=−811/−768 mV vs. ferrocenium/ferrocene) and lower energy charge transfer bands than their 465 counterparts (E1/2=−923/‐854 mV). Antiproliferation activities were evaluated against the lung adenocarcinoma cell line (A549) and nonmalignant lung fibroblast cell line (IMR‐90) using the MTT assay. CuL2awas potent (A549EC50=0.080 μM) and selective (IMR‐90EC50/A549EC50=25) for A549. Its linkage isomer CuL2bhad equivalent A549 activity, but lower selectivity (IMR‐90EC50/A549EC50=12.5). The isomers CuL3aand CuL3bwere less potent withA549EC50 values of 1.9 and 0.19 M and less selective withIMR‐90EC50/A549EC50ratios of 2.3 and 2.65, respectively. There was no correlation between reduction potential and A549 antiproliferation activity/selectivity.  more » « less
Award ID(s):
1800245
PAR ID:
10468915
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
European Journal of Inorganic Chemistry
ISSN:
1434-1948
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The hydroxylation of C–H bonds can be carried out by the high-valent CoIII,IV2(µ-O)2complex2asupported by the tetradentate tris(2-pyridylmethyl)amine ligand via a CoIII2(µ-O)(µ-OH) intermediate (3a). Complex3acan be independently generated either by H-atom transfer (HAT) in the reaction of2awith phenols as the H-atom donor or protonation of its conjugate base, the CoIII2(µ-O)2complex1a. Resonance Raman spectra of these three complexes reveal oxygen-isotope-sensitive vibrations at 560 to 590 cm−1associated with the symmetric Co–O–Co stretching mode of the Co2O2diamond core. Together with a Co•••Co distance of 2.78(2) Å previously identified for1aand2aby Extended X-ray Absorption Fine Structure (EXAFS) analysis, these results provide solid evidence for their “diamond core” structural assignments. The independent generation of3aallows us to investigate HAT reactions of2awith phenols in detail, measure the redox potential and pKaof the system, and calculate the O–H bond strength (DO–H) of3ato shed light on the C–H bond activation reactivity of2a. Complex3ais found to be able to transfer its hydroxyl ligand onto the trityl radical to form the hydroxylated product, representing a direct experimental observation of such a reaction by a dinuclear cobalt complex. Surprisingly, reactivity comparisons reveal2ato be 106-fold more reactive in oxidizing hydrocarbon C–H bonds than corresponding FeIII,IV2(µ-O)2and MnIII,IV2(µ-O)2analogs, an unexpected outcome that raises the prospects for using CoIII,IV2(µ-O)2species to oxidize alkane C–H bonds. 
    more » « less
  2. Palladium(0) phosphine complexes are of great importance as catalysts in numerous bond formation reactions that involve oxidative addition of substrates. Highly active catalysts with labile ligands are of particular interest but can be challenging to isolate and structurally characterize. We investigate here the synthesis and chemical reactivity of Pd 0 complexes that contain geometrically adaptable diferrocenylmercury-bridged diphosphine chelate ligands (L) in combination with a labile dibenzylideneacetone (dba) ligand. The diastereomeric diphosphines 1a (p S p R , meso -isomer) and 1b (p S p S -isomer) differ in the orientation of the ferrocene moieties relative to the central Ph 2 PC 5 H 3 –Hg–C 5 H 3 PPh 2 bridging entity. The structurally distinct trigonal LPd 0 (dba) complexes 2a ( meso ) and 2b (p S p S ) are obtained upon treatment with Pd(dba) 2 . A competition reaction reveals that 1b reacts faster than 1a with Pd(dba) 2 . Unexpectedly, catalytic interconversion of 1a ( meso ) into 1b ( rac ) is observed at room temperature in the presence of only catalytic amounts of Pd(dba) 2 . Both Pd 0 complexes, 2a and 2b , readily undergo oxidative addition into the C–Cl bond of CH 2 Cl 2 at moderate temperatures with formation of the square-planar trans -chelate complexes LPd II Cl(CH 2 Cl) ( 3a , 3b ). Kinetic studies reveal a significantly higher reaction rate for the meso -isomer 2a in comparison to (p S p S )- 2b . 
    more » « less
  3. Previous research often suggests that people who endorse more essentialist beliefs about social groups are also likely to show increased prejudice towards members of these social groups, and there is even some evidence to suggest that essentialism may lead to prejudice and stereotyping. However, there are several notable exceptions to this pattern in that, for certain social groups (e.g., gay men and lesbians), higher essentialism is actually related to lower prejudice. The current studies further explored the relationship between essentialism and prejudice by examining a novel type of essentialism—transgender essentialism (i.e., essentializing transgender identity), and its relationship to prejudice towards transgender people. Study 1 (N = 248) tested the viability of transgender essentialism as a construct and examined the association between transgender essentialism and transprejudice, while Studies 2a (N = 315), 2b (N = 343), 3a (N = 310), and 3b (N = 204) tested two casual pathways to explain this relationship. The results consistently showed that the more that people endorse transgender essentialist beliefs, the warmer their feelings towards trans people (relative to cis people) were, echoing past research showing a similar relationship between essentialism and prejudice towards sexual minorities. However, the manipulations of both essentialism (Studies 2a and 2b) and prejudice (Studies 3a and 3b) were largely unsuccessful at changing the desired construct, meaning we were unable to provide direct causal tests. The one exception was a successful manipulation of the universality of trans experiences, but even here this resulted in no change in prejudice. The primary contribution of this work is in robustly demonstrating that greater transgender essentialism is associated with transprejudice. 
    more » « less
  4. Abstract Bis‐porphyrin nanocages (M2BiCage, M = FeCl, Co, Zn) and their host‐guest complexes with C60and C70were used to examine how molecular porosity and interactions with carbon nanomaterials affect the CO2reduction activity of metalloporphyrin electrocatalysts. The cages were found to adsorb on carbon black to provide electrocatalytic inks with excellent accessibilities of the metal sites (≈50%) even at high metal loadings (2500 nmol cm−2), enabling good activity for reducing CO2to CO. A complex of C70bound inside(FeCl)2BiCageachieves high current densities for CO formation at low overpotentials (|jCO| >7 mA cm−2,η= 320 mV; >13.5 mA cm−2,η= 520 mV) with ≥95% Faradaic efficiency (FECO), andCo2BiCageachieves high turnover frequencies (≈1300 h−1,η= 520 mV) with 90% FECO. In general, blocking the pore with C60or C70improves the catalytic performance of(FeCl)2BiCageand has only small effects onCo2BiCage, indicating that the good catalytic properties of the cages cannot be attributed to their internal pores. Neither enhanced electron transfer rates nor metal‐fullerene interactions appear to underlie the ability of C60/C70to improve the performance of(FeCl)2BiCage, in contrast to effects often proposed for other carbon nanosupports. 
    more » « less
  5. We are developing energy-efficient and reversible carbon capture and release (CCR) systems that mimic the Lys201 carbamylation reaction in the active site of ribulose-1,5-bisphosphate carboxylase-oxygenase (RuBisCO). The multiequilibria scenario ammonium ion Xa ⇌ amine Xb ⇌ carbamic acid Xc ⇌ carbamate Xd requires the presence of both free amine and CO2 for carbamylation and is affected by the pKa(Xa). Two fluorination strategies aimed at ammonium ion pKa depression and low pH carbamylation were analyzed with (2,2,2-trifluoroethyl)butylamine 2b and 2,2-difluoropropylamine 3b and compared to butylamine 1b. The determination of K1 and ΔG1 of the carbamylation reactions requires the solution of multiequilibria systems of equations based on initial conditions, 1H NMR measurements of carbamylation yields over a wide pH range, and knowledge of K2K5 values. K2 and K3 describe carbonic acid acidity, and ammonium ion acidities K4 were measured experimentally. We calibrated carbamic acid acidities K5 based on the measured value K6 of aminocarbamic acid using isodesmic reactions. The proton exchange reactions were evaluated with ab initio computations at the APFD/6-311+G* level in combination with continuum solvation models and explicit solvation. The utilities of 13 will be discussed as they pertain to the development of fluorine-modified RuBisCO-mimetic reversible CCR systems. 
    more » « less