skip to main content


Title: Two‐Dimensional Supramolecular Polymerization of a Bis‐Urea Macrocycle into a Brick‐Like Hydrogen‐Bonded Network
Abstract

We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.

 
more » « less
NSF-PAR ID:
10469016
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Angewandte Chemie
Volume:
135
Issue:
46
ISSN:
0044-8249
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We report on a dendronized bis‐urea macrocycle1self‐assembling via a cooperative mechanism into two‐dimensional (2D) nanosheets formed solely by alternated urea‐urea hydrogen bonding interactions. The pure macrocycle self‐assembles in bulk into one‐dimensional liquid‐crystalline columnar phases. In contrast, its self‐assembly mode drastically changes in CHCl3or tetrachloroethane, leading to 2D hydrogen‐bonded networks. Theoretical calculations, complemented by previously reported crystalline structures, indicate that the 2D assembly is formed by a brick‐like hydrogen bonding pattern between bis‐urea macrocycles. This assembly is promoted by the swelling of the trisdodecyloxyphenyl groups upon solvation, which frustrates, due to steric effects, the formation of the thermodynamically more stable columnar macrocycle stacks. This work proposes a new design strategy to access 2D supramolecular polymers by means of a single non‐covalent interaction motif, which is of great interest for materials development.

     
    more » « less
  2. Abstract

    Herein, we probe the hydrogen bond‐driven self‐assembly of a triphenylamine (TPA) bis‐urea macrocycle in the presence and absence of guests. Comprised of methylene urea‐bridged TPAs with exterior tridodecyloxy benzene solubilizing groups, the macrocycle exhibits concentration‐dependent aggregate formation in THF and H2O/THF mixtures as characterized by1H NMR and DOSY experiments. Its assembly processes were further probed by temperature‐dependent UV/Vis and fluorescence spectroscopy. Upon heating, UV/Vis spectra exhibit a hypsochromic shift in the λmax, while fluorescence spectra show an increase in emission intensity. Conversely, the protected macrocycle that lacks hydrogen bond donors demonstrates no significant change. Thermodynamic analysis indicates a cooperative self‐assembly pathway with distinct nucleation and elongation regimes. The morphology and structure of the aggregate were elucidated by dynamic light scattering, atomic force microscopy, scanning and transmission electron microscopy. Variable temperature emission spectra were utilized to monitor the impact of guests, such as diphenylacetylene, that can be bound in the columnar channels. The findings suggest that the elongation of assemblies is influenced by the presence of these guests. In comparison, diphenyl sulfoxide, likely functioning as a chain stopper, limited the assembly size. These studies suggest that judicious selection of (co)monomers may modulate the function and utility of these supramolecular systems.

     
    more » « less
  3. null (Ed.)
    Bimetallic bis-urea functionalized salen-aluminum catalysts have been developed for cyclic carbonate synthesis from epoxides and CO2. The urea moiety provides a bimetallic scaffold through hydrogen bonding, which expedites the cyclic carbonate formation reaction under mild reaction conditions. The turnover frequency (TOF) of the bis-urea salen Al catalyst is three times higher than that of a μ-oxo-bridged catalyst, and 13 times higher than that of a monomeric salen aluminum catalyst. The bimetallic reaction pathway is suggested based on urea additive studies and kinetic studies. Additionally, the X-ray crystal structure of a bis-urea salen Ni complex supports the self-assembly of the bis-urea salen metal complex through hydrogen bonding. 
    more » « less
  4. Self-assembly of brominated triphenylamine bis-urea macrocycles affords robust porous materials. Urea hydrogen bonds organize these building blocks into 1-dimensional columns, which pack via halogen–aryl interactions. The crystals are stable when emptied, present two distinct absorption sites for Xe with restricted Xe diffusion, and exhibit single-crystal-to-single-crystal guest exchange. 
    more » « less
  5. We demonstrated ion-mobility spectrometry mass spectrometry (IMS-MS) as a powerful tool for interrogating and preserving selective chemistry including non-covalent and host–guest complexes of m -xylene macrocycles formed in solution. The technique readily revealed the unique favorability of a thiourea-containing macrocycle MXT to Zn 2+ to form a dimer complex with the cation in an off-axis sandwich structure having the Zn–S bonds in a tetrahedral coordination environment. Replacing thiourea with urea generates MXU which formed high-order oligomerization with weak binding interactions to neutral DMSO guests detected at every oligomer size. The self-assembly pathway observed for this macrocycle is consistent with the crystalline assembly. Further transformation of urea into squaramide produces MXS, a rare receptor for probing sulfate in solution. Tight complexes were observed for both monomeric and dimeric of MXS in which HSO 4 − bound stronger than SO 4 2− to the host. The position of HSO 4 − at the binding cavity is a 180° inversion of the reported crystallographic SO 4 2− . The MXS dimer formed a prism-like shape with HSO 4 − exhibiting strong contacts with the 8 amine protons of two MXS macrocycles. By eliminating intermolecular interferences, we detected the low energy structures of MXS with collisional cross section (CCS) matching cis – trans and cis – cis squaramides-amines, both were not observed in crystallization trials. The experiments collectively unravel multiple facets of macrocycle chemistry including conformational flexibility, self-assembly and ligand binding; all in one analysis. Our findings illustrate an inexpensive and widely applicable approach to investigate weak but important interactions that define the shape and binding of macrocycles. 
    more » « less