Abstract We present the first results from a new survey for high-redshift (z≳ 5) gravitationally lensed quasars and close quasar pairs. We carry out candidate selection based on the colors and shapes of objects in public imaging surveys, then conduct follow-up observations to confirm the nature of high-priority candidates. In this paper, we report the discoveries of J0025–0145 (z= 5.07), which we identify as an intermediately lensed quasar, and J2329–0522 (z= 4.85), which is a kiloparsec-scale close quasar pair. The Hubble Space Telescope (HST) image of J0025–0145 shows a foreground lensing galaxy located 0.″6 away from the quasar. However, J0025–0145 does not exhibit multiple lensed images of the quasar, and we identify J0025–0145 as an intermediate lensing system (a lensing system that is not multiply imaged but has a significant magnification). The spectrum of J0025–0145 implies an extreme Eddington ratio if the quasar luminosity is intrinsic, which could be explained by a large lensing magnification. The HST image of J0025–0145 also indicates a tentative detection of the quasar host galaxy in the rest-frame UV, illustrating the power of lensing magnification and distortion in studies of high-redshift quasar host galaxies. Object J2329–0522 consists of two resolved components with significantly different spectral properties and a lack of lensing galaxy detection under subarcsecond seeing. We identify it as a close quasar pair, which is the highest confirmed kiloparsec-scale quasar pair to date. We also report four lensed quasars and quasar pairs at 2 <z< 4 and discuss possible improvements to our survey strategy.
more »
« less
Varstrometry for Off-nucleus and Dual Subkiloparsec Active Galactic Nuclei (VODKA): Investigating the Nature of SDSS J0823+2418 at z = 1.81, A Likely Lensed Quasar
Abstract Dual quasars at small physical separations are an important precursor phase of galaxy mergers, ultimately leading to the coalescence of the two supermassive black holes. Starting from a sample of dual and/or lensed quasar candidates discovered using astrometric jitter in Gaia data, we present a pilot case study of one of the most promising yet puzzling candidate dual quasars at cosmic noon (z∼ 1.8). Using multiwavelength imaging and spectroscopy from X-ray to radio, we test whether the SDSS J0823+2418 system is two individual quasars in a bound pair at separation ∼0.″64, or instead a single quasar being gravitationally lensed by a foreground galaxy. We find consistent flux ratios (∼1.25−1.45) between the two sources in optical, near-IR (NIR), UV, and radio, and thus similar spectral energy distributions, suggesting a strong-lensing scenario. However, differences in the radio spectral index, as well as changing X-ray fluxes, hint at either a dual quasar with otherwise nearly identical properties or perhaps lensing-based time lag of ∼3 days paired with intrinsic variability. We find with lens mass modeling that the relative NIR positions and magnitudes of the two quasars and a marginally detected central galaxy are consistent with strong lensing. Archival Sloan Digital Sky Survey spectra likewise suggest a foreground absorber via Mgiiabsorption lines. We conclude that SDSS J0823+2418 is likely a lensed quasar, and therefore that the VODKA sample contains a population of these lensed systems (perhaps as high as 50%) as well as dual quasars.
more »
« less
- PAR ID:
- 10469056
- Publisher / Repository:
- DOI PREFIX: 10.3847
- Date Published:
- Journal Name:
- The Astrophysical Journal
- Volume:
- 956
- Issue:
- 2
- ISSN:
- 0004-637X
- Format(s):
- Medium: X Size: Article No. 117
- Size(s):
- Article No. 117
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The search for dual supermassive black holes (SMBHs) is of immense interest in modern astrophysics. Galaxy mergers may fuel and produce SMBH pairs. Actively accreting SMBH pairs are observed as dual quasars, which are vital probes of SMBH growth. Dual quasars at cosmic noon are not well characterized. Gaia observations have enabled a novel technique to identify dual quasars at kiloparsec scales based on the small jitters of the light centroid as the two quasars vary stochastically. We present the first detailed study of az= 2.17, 0 46, 3.8 kpc separation dual quasar, J0749+2255, using JWST/NIRSpec integral field unit spectroscopy. Identified by Gaia, J0749+2255 is one of the most distant small-separation dual quasars known. We detect the faint ionized gas of the host galaxy, traced by the narrow Hαemission. Line ratios indicate ionization from the two quasars and from intense star formation. Spectral analysis of the two quasars suggests that they have similar black hole properties, hinting at the possible synchronized accretion activity or lensed quasar images. Surprisingly, the ionized gas kinematics suggest a rotating disk rather than the disturbed system expected in a major gas-rich galaxy merger. Numerical simulations show that this is a plausible outcome of a major gas-rich galaxy merger several tens of Myr before coalescence. Whether J0749+2255 reflects an interesting phase of dual quasar evolution or is a lensed quasar remains unclear. Thus, this study underscores the challenges in definitively distinguishing between dual and lensed quasars, with observations supporting either scenario.more » « less
-
Abstract The statistics of galactic-scale quasar pairs can elucidate our understanding of the dynamical evolution of supermassive black hole (SMBH) pairs, the duty cycles of quasar activity in mergers, or even the nature of dark matter, but they have been challenging to measure at cosmic noon, the prime epoch of massive galaxy and SMBH formation. Here we measure a double quasar fraction of ∼6.2 ± 0.5 × 10−4integrated over ∼0.″3–3″ separations (projected physical separations of ∼3–30 kpc atz∼ 2) in luminous (Lbol> 1045.8erg s−1) unobscured quasars at 1.5 <z< 3.5 using Gaia EDR3-resolved pairs around SDSS DR16 quasars. The measurement was based on a sample of 60 Gaia-resolved double quasars (out of 487 Gaia pairs dominated by quasar+star superpositions) at these separations, corrected for pair completeness in Gaia, which we quantify as functions of pair separation, magnitude of the primary, and magnitude contrast. The double quasar fraction increases toward smaller separations by a factor of ∼5 over these scales. The division between physical quasar pairs and lensed quasars in our sample is currently unknown, requiring dedicated follow-up observations (in particular, deep, subarcsecond-resolution IR imaging for the closest pairs). Intriguingly, at this point, the observed pair statistics are in rough agreement with theoretical predictions both for the lensed quasar population in mock catalogs and for dual quasars in cosmological hydrodynamic simulations. Upcoming wide-field imaging/spectroscopic space missions such as Euclid, CSST, and Roman, combined with targeted follow-up observations, will conclusively measure the abundances and host galaxy properties of galactic-scale quasar pairs, offset AGNs, and subarcsecond lensed quasars across cosmic time.more » « less
-
Abstract The identification of bright quasars atz≳ 6 enables detailed studies of supermassive black holes, massive galaxies, structure formation, and the state of the intergalactic medium within the first billion years after the Big Bang. We present the spectroscopic confirmation of 55 quasars at redshifts 5.6 <z< 6.5 and UV magnitudes −24.5 <M1450< −28.5 identified in the optical Pan-STARRS1 and near-IR VIKING surveys (48 and 7, respectively). Five of these quasars have independently been discovered in other studies. The quasar sample shows an extensive range of physical properties, including 17 objects with weak emission lines, 10 broad absorption line quasars, and 5 objects with strong radio emission (radio-loud quasars). There are also a few notable sources in the sample, including a blazar candidate atz= 6.23, a likely gravitationally lensed quasar atz= 6.41, and az= 5.84 quasar in the outskirts of the nearby (D∼ 3 Mpc) spiral galaxy M81. The blazar candidate remains undetected in NOEMA observations of the [Cii]and underlying emission, implying a star formation rate <30–70M⊙yr−1. A significant fraction of the quasars presented here lies at the foundation of the first measurement of thez∼ 6 quasar luminosity function from Pan-STARRS1 (introduced in a companion paper). These quasars will enable further studies of the high-redshift quasar population with current and future facilities.more » « less
-
null (Ed.)ABSTRACT Strongly lensed explosive transients such as supernovae, gamma-ray bursts, fast radio bursts, and gravitational waves are very promising tools to determine the Hubble constant (H0) in the near future in addition to strongly lensed quasars. In this work, we show that the transient nature of the point source provides an advantage over quasars: The lensed host galaxy can be observed before or after the transient’s appearance. Therefore, the lens model can be derived from images free of contamination from bright point sources. We quantify this advantage by comparing the precision of a lens model obtained from the same lenses with and without point sources. Based on Hubble Space Telescope (HST) Wide Field Camera 3 (WFC3) observations with the same sets of lensing parameters, we simulate realistic mock data sets of 48 quasar lensing systems (i.e. adding AGN in the galaxy centre) and 48 galaxy–galaxy lensing systems (assuming the transient source is not visible but the time delay and image positions have been or will be measured). We then model the images and compare the inferences of the lens model parameters and H0. We find that the precision of the lens models (in terms of the deflector mass slope) is better by a factor of 4.1 for the sample without lensed point sources, resulting in an increase of H0 precision by a factor of 2.9. The opportunity to observe the lens systems without the transient point sources provides an additional advantage for time-delay cosmography over lensed quasars. It facilitates the determination of higher signal-to-noise stellar kinematics of the main deflector, and thus its mass density profile, which, in turn plays a key role in breaking the mass-sheet degeneracy and constraining H0.more » « less