skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Control of structure and dynamics in polymer-networked engineered nanoparticle arrays by electric fields
Polymer-networked nanoparticles are the basis for advanced materials useful wearable electron- ics, drug delivery, autonomous computing and other applications. To characterize and predict the physics and underlying mechanisms of the network connections in 2D and 3D engineered nanopar- ticle (ENP) arrays, we developed an analogous Potts model of 3-state sites. Together with dissipa- tive particle dynamics (DPD) simulations, we found that the network structures in polymer-linked nanoparticle assemblies are generally dominated by the number of nearest neighbors and not the topology of the lattice. When the E-field regulates the network connections, the links along the E-field direction always dominate the overall network structure.  more » « less
Award ID(s):
2102455
PAR ID:
10469087
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Physical Society
Date Published:
Journal Name:
Physical Review Research
Volume:
5
Issue:
2
ISSN:
2643-1564
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain-expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  2. Poster Abstract: To interconnect research facilities across wide geographic areas, network operators deploy science networks, also referred to as Research and Education (R&E) networks. These networks allow experimenters to establish dedicated network connections between research facilities for transferring large amounts of data. Recently, R&E networks have started using Software-Defined Networking (SDN) and Software Defined Exchanges (SDX) for deploying these connections. AtlanticWave/SDX is a response to the growing demand to support end-to-end network services spanning multiple SDN domains. However, requesting these services is a challenging task for domain-expert scientists, because the interfaces of the R&E networks have been developed by network operators for network operators. In this paper, we propose interfaces that allow domain expert scientists to reserve resources of the scientific network using abstractions that focus on their data transfer needs for scientific workflow management. Recent trends in the networking field pursue better interfaces for requesting network services (e.g., intent-based networking). Although intents are sufficient for the needs of network operations, they are not abstract enough in most cases to be used by domain-expert scientists. This is an issue we are addressing in the AtlanticWave/SDX design: network operators and domain expert scientists will have their own interfaces focusing on their specific needs. 
    more » « less
  3. Abstract Modern implantable bioelectronics demand soft, biocompatible components that make robust, low‐impedance connections with the body and circuit elements. Concurrently, such technologies must demonstrate high efficiency, with the ability to interface between the body's ionic and external electronic charge carriers. Here, a mixed‐conducting suture, the e‐suture, is presented. Composed of silk, the conducting polymer poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS), and insulating jacketing polymers,the resulting e‐suture has mixed‐conducting properties at the interface with biological tissue as well as effective insulation along its length. The e‐suture can be mechanically integrated into electronics, enabling the acquisition of biopotentials such as electrocardiograms, electromyograms, and local field potentials (LFP). Chronic, in vivo acquisition of LFP with e‐sutures remains stable for months with robust brain activity patterns. Furthermore, e‐sutures can establish electrophoretic‐based local drug delivery, potentially offering enhanced anatomical targeting and decreased side effects associated with systemic administration, while maintaining an electrically conducting interface for biopotential monitoring. E‐sutures expand on the conventional role of sutures and wires by providing a soft, biocompatible, and mechanically sound structure that additionally has multifunctional capacity for sensing, stimulation, and drug delivery. 
    more » « less
  4. Current polymer network design suffers from intrinsic trade-offs, where polymer networks with high modulus often turn out to be in short of stretchability or fracture toughness. Here, we show a novel polymer network design through polymer-nanoparticle alternating hybrids that enable integrating the non-polymeric colloid deformation into polymer network design. The new class of polymer network exhibits colloidal yielding at small deformation before conformational change at higher elongation ratios, enabling simultaneous achievement of high Young’s modulus of E≈10-50 MPa, high yield strength of σ_Y~ 3-5 MPa, large stretchability of λ~7-10, and high fracture energy density of Γ~30 MJ/m^3. These results demonstrate a successful strategy to decouple the molecular mechanics for yield from that for stretchability or toughness, leading to new polymer networks design. 
    more » « less
  5. We introduce an unrolled quantization U_q^E(gl(1,1)) of the complex Lie superalgebra gl(1,1) and use its categories of weight modules to construct and study new three dimensional non-semisimple topological quantum field theories. These theories are defined on categories of cobordisms which are decorated by ribbon graphs and cohomology classes and take values in categories of graded super vector spaces. Computations in these theories are enabled by a detailed study of the representation theory of U_q^E(gl(1,1)). We argue that by restricting to subcategories of integral weight modules we obtain topological quantum field theories which are mathematical models of Chern--Simons theories with gauge supergroups psl(1,1,) and U(1,1) coupled to background flat \mathbb{C}^{\times}-connections, as studied in the physics literature by Rozansky--Saleur and Mikhaylov. In particular, we match Verlinde formulae and mapping class group actions on state spaces of non-generic tori with results in the physics literature. We also obtain explicit descriptions of state spaces of generic surfaces, including their graded dimensions, which go beyond results in the physics literature. 
    more » « less