skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Brief research report: Evaluation of photoplethysmographic heart rate monitoring for sheep under heat-stressed conditions
The objective of this study was to investigate the accuracy of a wearable photoplethysmography (PPG) sensor in monitoring heart rate (HR) of sheep housed in high-temperature environments. We hypothesized that the PPG sensor would be capable of differentiating low, normal, and high HR, but would struggle to produce exact HR estimates. The sensor was open source and comprised of a microprocessor (SparkFun®ThingPlus), a photoplethysmography sensor (SparkFun® MAX30101 & MAX32664), and a data storage module (SD Card 16GB), all sewn into a nylon collar with hook-and-loop closure. Sheep (n=4) were divided into 2 groups and exposed to different thermal environments in a cross-over design. The collar was placed around the neck of the sheep during the data collection phase and the manual HR were collected twice a day using a stethoscope. Precision and accuracy of numeric heart rate estimates were analyzed in R software using Pearson correlation and root mean squared prediction errors. Random forest regression was used to classify HR based on low, medium, and high to determine opportunities to leverage the PPG sensors for HR classification. Sensitivity, specificity, and accuracy were measured to evaluate the classification approach. Our results indicated that the PPG-based sensor measured sheep HR with poor accuracy and with higher average estimates in comparison with manually measured with a stethoscope. Categorical classification of HR was also poor, with accuracies ranging from 32% to 49%. Additional work is needed focusing on data analytics, and signal optimization to further rely on PPG sensors for accurately measuring HR in sheep.  more » « less
Award ID(s):
2106987
PAR ID:
10469214
Author(s) / Creator(s):
;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Animal Science
Volume:
3
ISSN:
2673-6225
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This study sought to evaluate the accuracy of a PPG (photoplethysmography) sensor designed to measure human heart rates in monitoring the distal limb pulse of healthy adult horses. We hypothesized that the PPG sensor is sensitive to placement location and orientation, and that measurement accuracies depend on placement and orientation on the limb. To evaluate this hypothesis, a completely randomized block design with a factorial treatment structure was used. Horses were considered as the block. Limb type (right front, left front, right hind, and left hind) and position of sensor (medial or lateral) were treatments, with levels arranged in a complete (4x2) factorial design. Data were collected by placing the PPG sensor on the limb of each horse (n= 6), with placement location according to the treatment (limb type and location) combination, and taking pulse readings for 60 seconds. Manual heart rates were collected concurrently using a stethoscope. Data were analyzed by calculating root mean square errors (RMSE) for the PPG measurements with the manual heart rates as a gold standard. Variation in RMSE associated with limb and location of sensor were evaluated using a general linear model with fixed effects for limb and location and a random effect for horse. Our results indicated that the PPG sensor was ineffective at measuring horse heart rates, and that the device was insensitive to placement location and orientation. Future work should focus on developing alternative analytics to interpret the data from PPG sensors to better reflect horse heart rates. 
    more » « less
  2. Abstract This work details the partially observable markov decision process (POMDP) and the point-based value iteration (PBVI) algorithms for use in multisensor systems, specifically, a sensor system capable of heart rate (HR) estimation through wearable photoplethysmography (PPG) and accelerometer signals. PPG sensors are highly susceptible to motion artifact (MA); however, current methods focus more on overall MA filters, rather than action specific filtering. An end-to-end embedded human activity recognition (HAR) System is developed to represent the observation uncertainty, and two action specific PPG MA reducing filters are proposed as actions. PBVI allows optimal action decision-making based on an uncertain observation, effectively balancing correct action choice and sensor system cost. Two central systems are proposed to accompany these algorithms, one for unlimited observation access and one for limited observation access. Through simulation, it can be shown that the limited observation system performs optimally when sensor cost is negligible, while limited observation access performs optimally when a negative reward for sensor use is considered. The final general framework for POMDP and PBVI was applied to a specific HR estimation example. This work can be expanded on and used as a basis for future work on similar multisensor system. 
    more » « less
  3. Baba, Justin S; Coté, Gerard L (Ed.)
    In this research, we examine the potential of measuring physiological variables, including heart rate (HR) and respiration rate (RR) on the upper arm using a wireless multimodal sensing system consisting of an accelerometer, a gyroscope, a three-wavelength photoplethysmography (PPG), single-sided electrocardiography (SS-ECG), and bioimpedance (BioZ). The study included collecting HR data when the subject was at rest and typing, and RR data when the subject was at rest. The data from three wavelengths of PPG and BioZ were collected and compared to the SS-ECG as the standard. The accelerometer and gyro signals were used to exclude data with excessive noise due to motion. The results showed that when the subject remained sedentary, the mean absolute error (MAE) for the HR calculation for all three wavelengths of the PPG modality was less than two bpm, while the BioZ was 3.5 bpm compared with SS-ECG HR. The MAE for typing increased for both modalities and was less than three bpm for all three wavelengths of the PPG but increased to 7.5 bpm for the BioZ. Regarding RR, both modalities resulted in RR within one breath per minute of the SS-ECG modality for the one breathing rate. Overall, all modalities on this upper arm wearable worked well when the subject was sedentary. Still, the SS-ECG and PPG showed less variability for the HR signal in the presence of motion during micro-motions such as typing. 
    more » « less
  4. A photoplethysmography (PPG) is an uncomplicated and inexpensive optical technique widely used in the healthcare domain to extract valuable health-related information, e.g., heart rate variability, blood pressure, and respiration rate. PPG signals can easily be collected continuously and remotely using portable wearable devices. However, these measuring devices are vulnerable to motion artifacts caused by daily life activities. The most common ways to eliminate motion artifacts use extra accelerometer sensors, which suffer from two limitations: i) high power consumption and ii) the need to integrate an accelerometer sensor in a wearable device (which is not required in certain wearables). This paper proposes a low-power non-accelerometer-based PPG motion artifacts removal method outperforming the accuracy of the existing methods. We use Cycle Generative Adversarial Network to reconstruct clean PPG signals from noisy PPG signals. Our novel machine-learning-based technique achieves 9.5 times improvement in motion artifact removal compared to the state-of-the-art without using extra sensors such as an accelerometer, which leads to 45% improvement in energy efficiency. 
    more » « less
  5. Respiration rate and heart rate variability (HRV) due to respiratory sinus arrhythmia (RSA) are physiological measurements that can offer useful diagnostics for a variety of medical conditions. This study uses a wrist-worn wearable development platform from Maxim Integrated and Doppler radar sensor developed by Adnoviv, Inc. to non-invasively measure these physiological signals. Six datasets are recorded comprising of five different individuals in varying physical environments breathing at different respiration rates. First, respiration rates are extracted from photoplethysmography (PPG) and accelerometer data and compared to Doppler radar. The average maximum and minimum difference between Doppler radar extracted RR and PPG, HRV RSA, and accelerometer extracted RR is 0.342 b/m and 0.171 b/m, respectively. Then, waveforms for Doppler radar, PPG, and HRV RSA signals are plotted in time domain and an analysis discusses the physical phenomena associated with the phase alignment of the signals. 
    more » « less