We present a new, robust three dimensional microfabrication method for highly parallel microfluidics, to improve the throughput of on-chip material synthesis by allowing parallel and simultaneous operation of many replicate devices on a single chip. Recently, parallelized microfluidic chips fabricated in Silicon and glass have been developed to increase the throughput of microfluidic materials synthesis to an industrially relevant scale. These parallelized microfluidic chips require large arrays (>10,000) of Through Silicon Vias (TSVs) to deliver fluid from delivery channels to the parallelized devices. Ideally, these TSVs should have a small footprint to allow a high density of features to be packed into a single chip, have channels on both sides of the wafer, and at the same time minimize debris generation and wafer warping to enable permanent bonding of the device to glass. Because of these requirements and challenges, previous approaches cannot be easily applied to produce three dimensional microfluidic chips with a large array of TSVs. To address these issues, in this paper we report a fabrication strategy for the robust fabrication of three-dimensional Silicon microfluidic chips consisting of a dense array of TSVs, designed specifically for highly parallelized microfluidics. In particular, we have developed a two-layer TSV design that allows small diameter vias (
- Award ID(s):
- 2124999
- NSF-PAR ID:
- 10469297
- Publisher / Repository:
- The International Journal of Advanced Manufacturing Technology
- Date Published:
- Journal Name:
- The International Journal of Advanced Manufacturing Technology
- Volume:
- 127
- Issue:
- 11-12
- ISSN:
- 0268-3768
- Page Range / eLocation ID:
- 5063 to 5071
- Subject(s) / Keyword(s):
- Wafer metrology and inspection · Particle inspection · Color space transform · Hue-saturation-value (HSV)
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract d < 20 µm) without sacrificing the mechanical stability of the chip and a patterned SiO2etch-stop layer to replace the use of carrier wafers in Deep Reactive Ion Etching (DRIE). Our microfabrication strategy allows >50,000 (d = 15 µm) TSVs to be fabricated on a single 4” wafer, using only conventional semiconductor fabrication equipment, with 100% yield (M = 16 chips) compared to 30% using previous approaches. We demonstrated the utility of these fabrication strategies by developing a chip that incorporates 20,160 flow focusing droplet generators onto a single 4” Silicon wafer, representing a 100% increase in the total number of droplet generators than previously reported. To demonstrate the utility of this chip for generating pharmaceutical microparticle formulations, we generated 5–9 µm polycaprolactone particles with a CV < 5% at a rate as high as 60 g/hr (>1 trillion particles/hour). -
Abstract The field of integrated photonics has advanced rapidly due to wafer-scale fabrication, with integrated-photonics platforms and fabrication processes being demonstrated at both infrared and visible wavelengths. However, these demonstrations have primarily focused on fabrication processes on silicon substrates that result in rigid photonic wafers and chips, which limit the potential application spaces. There are many application areas that would benefit from mechanically-flexible integrated-photonics wafers, such as wearable healthcare monitors and pliable displays. Although there have been demonstrations of mechanically-flexible photonics fabrication, they have been limited to fabrication processes on the individual device or chip scale, which limits scalability. In this paper, we propose, develop, and experimentally characterize the first 300-mm wafer-scale platform and fabrication process that results in mechanically-flexible photonic wafers and chips. First, we develop and describe the 300-mm wafer-scale CMOS-compatible flexible platform and fabrication process. Next, we experimentally demonstrate key optical functionality at visible wavelengths, including chip coupling, waveguide routing, and passive devices. Then, we perform a bend-durability study to characterize the mechanical flexibility of the photonic chips, demonstrating bending a single chip 2000 times down to a bend diameter of 0.5 inch with no degradation in the optical performance. Finally, we experimentally characterize polarization-rotation effects induced by bending the flexible photonic chips. This work will enable the field of integrated photonics to advance into new application areas that require flexible photonic chips.
-
Abstract Digital in-line holography (DIH) is an established method to image small particles in a manner where image reconstruction is performed computationally post-measurement. This ability renders it ideal for aerosol characterization, where particle collection or confinement is often difficult, if not impossible. Conventional DIH provides a gray-scale image akin to a particle’s silhouette, and while it gives the particle size and shape, there is little information about the particle material. Based on the recognition that the spectral reflectance of a surface is partly determined by the material, we demonstrate a method to image free-flowing particles with DIH in color with the eventual aim to differentiate materials based on the observed color. Holograms formed by the weak backscattered light from individual particles illuminated by red, green, and blue lasers are recorded by a color sensor. Images are reconstructed from the holograms and then layered to form a color image, the color content of which is quantified by chromaticity analysis to establish a representative signature. A variety of mineral dust aerosols are studied where the different signatures suggest the possibility to differentiate particle material. The ability of the method to resolve the inhomogeneous composition within a single particle in some cases is shown as well.more » « less
-
null (Ed.)Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach to improve the accessibility of POC devices in resource-limited environments. Towards this goal, we introduce a 3D-printed imaging platform (3DPIP) capable of accurately counting particles and perform fluorescence microscopy. In our 3DPIP, captured microscopic images of particle flow are processed on a custom developed particle counter code to provide a particle count. This prototype uses a machine vision-based algorithm to identify particles from captured flow images and is flexible enough to allow for labeled and label-free particle counting. Additionally, the particle counter code returns particle coordinates with respect to time which can further be used to perform particle image velocimetry. These results can help estimate forces acting on particles, and identify and sort different types of cells/particles. We evaluated the performance of this prototype by counting 10 μm polystyrene particles diluted in deionized water at different concentrations and comparing the results with a commercial Beckman-Coulter Z2 particle counter. The 3DPIP can count particle concentrations down to ∼100 particles per mL with a standard deviation of ±20 particles, which is comparable to the results obtained on a commercial particle counter. Our platform produces accurate results at flow rates up to 9 mL h −1 for concentrations below 1000 particle per mL, while 5 mL h −1 produces accurate results above this concentration limit. Aside from performing flow-through experiments, our instrument is capable of performing static experiments that are comparable to a plate reader. In this configuration, our instrument is able to count between 10 and 250 cells per image, depending on the prepared concentration of bacteria samples ( Citrobacter freundii ; ATCC 8090). Overall, this platform represents a first step towards the development of an affordable fully 3D printable imaging flow cytometry instrument for use in resource-limited clinical environments.more » « less
-
Abstract Silicon wafers comprise approximately 40% of crystalline silicon module cost and represent an area of great technological innovation potential. Paradoxically, unconventional wafer‐growth techniques have thus far failed to displace multicrystalline and Czochralski silicon, despite four decades of innovation. One of the shortcomings of most unconventional materials has been a persistent carrier lifetime deficit in comparison to established wafer technologies, which limits the device efficiency potential. In this perspective article, we review a defect‐management framework that has proven successful in enabling millisecond lifetimes in kerfless and cast materials. Control of dislocations and slowly diffusing metal point defects during growth, coupled to effective control of fast‐diffusing species during cell processing, is critical to enable high cell efficiencies. To accelerate the pace of novel wafer development, we discuss approaches to rapidly evaluate the device efficiency potential of unconventional wafers from injection‐dependent lifetime measurements. Copyright © 2015 John Wiley & Sons, Ltd.