skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Take responsibility to understand engineering (TRUE): A qualitative investigation of student’s engineering self-efficacy as a result of participation in a multi-stakeholder program
Award ID(s):
2022299
PAR ID:
10469305
Author(s) / Creator(s):
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This paper discusses feasible means of integrating mentorship programs into engineering and engineering technology curricula. The two main motivations for investigating the development of such programs are to improve retention rates and to augment the efforts toward increasing the enrollment of minority students. In fact, it can be argued that a mentorship program can also indirectly assist in the achievement of critical student outcomes for accreditation. The model of mentorship presented in this paper involves a vertical integration of cohorts through a series of project-based learning (PBL) courses. Furthermore, this attempt is enhanced by the introduction of incentives that encourage student involvement in undergraduate research as well as on-campus engineering organizations. The specific focus of the mentorship is on student-student relationships in addition to the conventional faculty-student relationships. These relationships allow students to learn from each other since they are able to strongly relate to each other’s experiences among their peer group. The mentoring model proposed in this paper formulates a learning community that allows the student to form a support group and a mechanism for preventive intervention, as discussed in other studies on mentoring programs. Such student engagement is commonly acknowledged to significantly benefit the students as well as the student mentors involved in the program. Data from an initial student survey that measures the efficacy of the proposed mentorship program is included in this paper and these data are discussed in detail. A 1-5 Likert scale is used for quantitative analysis of the data in order to evaluate the self-efficacy of the program. The group size of the mentorship cohort has been limited to a maximum of thirty students at this stage. Preliminary analysis of the data indicates that the participating students have a strongly positive opinion of the program. 
    more » « less
  2. The typical student mind-set is focused on getting the ‘right’ answer for a problem with certainty that every problem has one and only one correct answer. However, this viewpoint is not consistent with real life problems as the information available for solving a real-life problem can be stochastic and incomplete. As a result, many correct answers could be possible and the acceptable one would depend on several factors. Students must therefore be exposed to such ambiguous problem spaces. This paper presents a comparison of undergraduate students’ tolerance of ambiguity. The modified Rydell-Rosen Ambiguity Tolerance scale was administered to a cross-section of students to measure their responses. Differences between engineering and non-engineering students were observed. The influence of academic classification and gender were also observed. 
    more » « less
  3. Abstract The derivation of a theory of systems engineering has long been complicated by the fact that there is little consensus within the systems engineering community regarding precisely what systems engineering is, what systems engineers do, and what might constitute reasonable systems engineering practices. To date, attempts at theories fail to accommodate even a sizable fraction of the current systems engineering community, and they fail to present a test of validity of systems theories, analytical methods, procedures, or practices. This article presents a more theoretical and more abstract approach to the derivation of a theory of systems engineering that has the potential to accommodate a broad segment of the systems engineering community and present a validity test. It is based on a simple preference statement: “I want the best system I can get.” From this statement, it is argued that a very rich theory can be obtained. However, most engineering disciplines are framed around a core set of widely accepted physical laws; to the authors’ knowledge, this is the first attempt to frame an engineering discipline around a preference. 
    more » « less
  4. While reducing anthropogenic greenhouse gas emissions remains the most essential element of any strategy to manage climate change risk, it is also in principle possible to directly cool the climate by reflecting some sunlight back to space. Such climate engineering approaches include adding aerosols to the stratosphere and marine cloud brightening. Assessing whether these ideas could reduce risk requires a broad, multidisciplinary research effort spanning climate science, social sciences, and governance. However, if such strategies were ever used, the effort would also constitute one of the most critical engineering design and control challenges ever considered: making real-time decisions for a highly uncertain and nonlinear dynamic system with many input variables, many measurements, and a vast number of internal degrees of freedom, the dynamics of which span a wide range of timescales. Here, we review the engineering design aspects of climate engineering, discussing both progress to date and remaining challenges that will need to be addressed. 
    more » « less