This article develops a Markov chain Monte Carlo (MCMC) method for a class of models that encompasses finite and countable mixtures of densities and mixtures of experts with a variable number of mixture components. The method is shown to maximize the expected probability of acceptance for cross-dimensional moves and to minimize the asymptotic variance of sample average estimators under certain restrictions. The method can be represented as a retrospective sampling algorithm with an optimal choice of auxiliary priors and as a reversible jump algorithm with optimal proposal distributions. The method is primarily motivated by and applied to a Bayesian nonparametric model for conditional densities based on mixtures of a variable number of experts. The mixture of experts model outperforms standard parametric and nonparametric alternatives in out of sample performance comparisons in an application to Engel curve estimation. The proposed MCMC algorithm makes estimation of this model practical.
more »
« less
The Econometrics of Nonlinear Budget Sets
This article surveys the development of nonparametric models and methods for estimation of choice models with nonlinear budget sets. The discussion focuses on the budget set regression, that is, the conditional expectation of a choice variable given the budget set. Utility maximization in a nonparametric model with general heterogeneity reduces the curse of dimensionality in this regression. Empirical results using this regression are different from maximum likelihood and give informative inference. The article also considers the information provided by kink probabilities for nonparametric utility with general heterogeneity. Instrumental variable estimation and the evidence it provides of heterogeneity in preferences are also discussed.
more »
« less
- Award ID(s):
- 1757140
- PAR ID:
- 10469508
- Publisher / Repository:
- Annual Review of Economics
- Date Published:
- Journal Name:
- Annual Review of Economics
- Volume:
- 15
- Issue:
- 1
- ISSN:
- 1941-1383
- Page Range / eLocation ID:
- 287 to 306
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Cognitive diagnosis models (CDMs) have been popularly used in fields such as education, psychology, and social sciences. While parametric likelihood estimation is a prevailing method for fitting CDMs, nonparametric methodologies are attracting increasing attention due to their ease of implementation and robustness, particularly when sample sizes are relatively small. However, existing consistency results of the nonparametric estimation methods often rely on certain restrictive conditions, which may not be easily satisfied in practice. In this article, the consistency theory for the general nonparametric classification method is reestablished under weaker and more practical conditions.more » « less
-
A Bracketing Relationship between Difference-in-Differences and Lagged-Dependent-Variable AdjustmentDifference-in-differences is a widely used evaluation strategy that draws causal inference from observational panel data. Its causal identification relies on the assumption of parallel trends, which is scale-dependent and may be questionable in some applications. A common alternative is a regression model that adjusts for the lagged dependent variable, which rests on the assumption of ignorability conditional on past outcomes. In the context of linear models, Angrist and Pischke (2009) show that the difference-in-differences and lagged-dependent-variable regression estimates have a bracketing relationship. Namely, for a true positive effect, if ignorability is correct, then mistakenly assuming parallel trends will overestimate the effect; in contrast, if the parallel trends assumption is correct, then mistakenly assuming ignorability will underestimate the effect. We show that the same bracketing relationship holds in general nonparametric (model-free) settings. We also extend the result to semiparametric estimation based on inverse probability weighting. We provide three examples to illustrate the theoretical results with replication files in Ding and Li (2019).more » « less
-
Multinomial choice models are fundamental for empirical modeling of economic choices among discrete alternatives. We analyze identification of binary and multinomial choice models when the choice utilities are nonseparable in observed attributes and multidimensional unobserved heterogeneity with cross-section and panel data. We show that derivatives of choice probabilities with respect to continuous attributes are weighted averages of utility derivatives in cross-section models with exogenous heterogeneity. In the special case of random coefficient models with an independent additive effect, we further characterize that the probability derivative at zero is proportional to the population mean of the coefficients. We extend the identification results to models with endogenous heterogeneity using either a control function or panel data. In time stationary panel models with two periods, we find that differences over time of derivatives of choice probabilities identify utility derivatives “on the diagonal,” i.e. when the observed attributes take the same values in the two periods. We also show that time stationarity does not identify structural derivatives “off the diagonal” both in continuous and multinomial choice panel models.more » « less
-
Abstract This paper is motivated by studying differential brain activities to multiple experimental condition presentations in intracranial electroencephalography (iEEG) experiments. Contrasting effects of experimental conditions are often zero in most regions and nonzero in some local regions, yielding locally sparse functions. Such studies are essentially a function-on-scalar regression problem, with interest being focused not only on estimating nonparametric functions but also on recovering the function supports. We propose a weighted group bridge approach for simultaneous function estimation and support recovery in function-on-scalar mixed effect models, while accounting for heterogeneity present in functional data. We use B-splines to transform sparsity of functions to its sparse vector counterpart of increasing dimension, and propose a fast nonconvex optimization algorithm using nested alternative direction method of multipliers (ADMM) for estimation. Large sample properties are established. In particular, we show that the estimated coefficient functions are rate optimal in the minimax sense under the L2 norm and resemble a phase transition phenomenon. For support estimation, we derive a convergence rate under the norm that leads to a selection consistency property under δ-sparsity, and obtain a result under strict sparsity using a simple sufficient regularity condition. An adjusted extended Bayesian information criterion is proposed for parameter tuning. The developed method is illustrated through simulations and an application to a novel iEEG data set to study multisensory integration.more » « less
An official website of the United States government

