Abstract Honey bees are critical pollinators in ecosystems and agriculture, but their numbers have significantly declined. Declines in pollinator populations are thought to be due to multiple factors including habitat loss, climate change, increased vulnerability to disease and parasites, and pesticide use. Neonicotinoid pesticides are agonists of insect nicotinic cholinergic receptors, and sub-lethal exposures are linked to reduced honey bee hive survival. Honey bees are highly dependent on circadian clocks to regulate critical behaviors, such as foraging orientation and navigation, time-memory for food sources, sleep, and learning/memory processes. Because circadian clock neurons in insects receive light input through cholinergic signaling we tested for effects of neonicotinoids on honey bee circadian rhythms and sleep. Neonicotinoid ingestion by feeding over several days results in neonicotinoid accumulation in the bee brain, disrupts circadian rhythmicity in many individual bees, shifts the timing of behavioral circadian rhythms in bees that remain rhythmic, and impairs sleep. Neonicotinoids and light input act synergistically to disrupt bee circadian behavior, and neonicotinoids directly stimulate wake-promoting clock neurons in the fruit fly brain. Neonicotinoids disrupt honey bee circadian rhythms and sleep, likely by aberrant stimulation of clock neurons, to potentially impair honey bee navigation, time-memory, and social communication.
more »
« less
Examining spatial and temporal drivers of pollinator nutritional resources: evidence from five decades of honey bee colony productivity data
Abstract Pollinators are an essential component of terrestrial food webs and agricultural systems but are threatened by insufficient access to floral resources. Managed honey bees, as generalist foragers that hoard nectar as honey, can act as bioindicators of floral resources available to pollinators in a given landscape through their accumulation of honey. Honey yields across the United States have decreased appreciably since the 1990s, concurrent with shifts in climate, land-use, and large-scale pesticide application. While many factors can affect honey accumulation, this suggests that anthropogenic stressors may be having large-scale impacts on the floral resources that pollinators depend on for their nutrition. We used hierarchical partitioning on five decades of state-level data to parse the most important environmental factors and likely mechanisms associated with spatial and temporal variation in honey yields across the US. Climatic conditions and soil productivity were among the most important variables for estimating honey yields, with states in warm or cool regions with productive soils having the highest honey yields per colony. These findings suggest that foundational factors constrain pollinator habitat suitability and define ecoregions of low or high honey production. The most important temporally varying factors were change in herbicide use, land use (i.e. increase in intensive agriculture and reduction in land conservation programs that support pollinators) and annual weather anomalies. This study provides insights into the interplay between broad abiotic conditions and fine temporal variation on habitat suitability for honey bees and other pollinators. Our results also provide a baseline for investigating how these factors influence floral resource availability, which is essential to developing strategies for resilient plant–pollinator communities in the face of global change.
more »
« less
- Award ID(s):
- 2109109
- PAR ID:
- 10469566
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 18
- Issue:
- 11
- ISSN:
- 1748-9326
- Format(s):
- Medium: X Size: Article No. 114018
- Size(s):
- Article No. 114018
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Habitat for pollinators is declining worldwide, threatening the health of both wild and agricultural ecosystems. Photovoltaic solar energy installation is booming, frequently near agricultural lands, where the land underneath ground-mounted photovoltaic panels is traditionally unused. Some solar developers and agriculturalists in the United States are filling the solar understory with habitat for pollinating insects in efforts to maximize land-use efficiency in agricultural lands. However, the impact of the solar panel canopy on the understory pollinator-plant community is unknown. Here we investigated the effects of solar arrays on plant composition, bloom timing and foraging behavior of pollinators from June to September (after peak bloom) in full shade plots and partial shade plots under solar panels as well as in full sun plots (controls) outside of the solar panels. We found that floral abundance increased and bloom timing was delayed in the partial shade plots, which has the potential to benefit late-season foragers in water-limited ecosystems. Pollinator abundance, diversity, and richness were similar in full sun and partial shade plots, both greater than in full shade. Pollinator-flower visitation rates did not differ among treatments at this scale. This demonstrates that pollinators will use habitat under solar arrays, despite variations in community structure across shade gradients. We anticipate that these findings will inform local farmers and solar developers who manage solar understories, as well as agriculture and pollinator health advocates as they seek land for pollinator habitat restoration in target areas.more » « less
-
Infectious disease is a major driver of biodiversity loss, but how disease threatens pollinator communities remains poorly understood. Here, we review the plant–pollinator–pathogen literature to identify mechanisms by which plant and pollinator traits and community composition influence pathogen transmission and assess consequences of transmission on plant and pollinator fitness. We find that plant and pollinator traits that increase floral contact can amplify transmission, but community-level factors such as plant and pollinator abundance are often correlated and can counteract one another. Although disease reduces pollinator fitness in some species, little research has assessed cascading effects on pollination, and taxonomic representation outside of honey bees and bumble bees remains poor. Major open challenges include (a) disentangling correlations between plant and pollinator abundance to understand how community composition impacts pathogen transmission and (b) distinguishing when pathogen transmission results in disease. Addressing these issues, as well as expanding taxonomic representation of pollinators, will deepen our understanding of how pathogens impact diverse pollinator communities.more » « less
-
Abstract Despite the importance of insect pollination to produce marketable fruits, insect pollination management is limited by insufficient knowledge about key crop pollinator species. This lack of knowledge is due in part to (1) the extensive labour involved in collecting direct observations of pollen transport, (2) the variability of insect assemblages over space and time and (3) the possibility that pollinators may need access to wild plants as well as crop floral resources.We address these problems using strawberry in the United Kingdom as a case study. First, we compare two proxies for estimating pollinator importance: flower visits and pollen transport. Pollen‐transport data might provide a closer approximation of pollination service, but visitation data are less time‐consuming to collect. Second, we identify insectparametersthat are associated with high importance as pollinators, estimated using each of the proxies above. Third, we estimated insects' use of wild plants as well as the strawberry crop.Overall, pollinator importances estimated based on easier‐to‐collect visitation data were strongly correlated with importances estimated based on pollen loads. Both frameworks suggest that bees (ApisandBombus) and hoverflies (Eristalis) are likely to be key pollinators of strawberries, although visitation data underestimate the importance of bees.Moving beyond species identities, abundant, relatively specialised insects with long active periods are likely to provide more pollination services.Most insects visiting strawberry plants also carried pollen from wild plants, suggesting that pollinators need diverse floral resources.Identifying essential pollinators or pollinator parameters based on visitation data will reach the same general conclusions as those using pollen transport data, at least in monoculture crop systems. Managers may be able to enhance pollination service by preserving habitats surrounding crop fields to complement pollinators' diets and provide habitats for diverse life stages of wild pollinators.more » « less
-
Abstract Many plants have evolved nutrient rewards to attract pollinators to flowers, but most research has focused on the sugar content of floral nectar resources. Concentrations of sodium in floral nectar (a micronutrient in low concentrations in nectar) can vary substantially both among and within co‐occurring species. It is hypothesized that sodium concentrations in floral nectar might play an important and underappreciated role in plant–pollinator interactions, especially because many animals, including pollinators, are sodium limited in nature. Yet, the consequences of variation in sodium concentrations in floral nectar remain largely unexplored. Here, we investigate whether enriching floral nectar with sodium influences the composition, diversity, and frequency of plant–pollinator interactions. We experimentally enriched sodium concentrations in four plant species in a subalpine meadow in Colorado, USA. We found that flowers with sodium‐enriched nectar received more visits from a greater diversity of pollinators throughout the season. Different pollinator species foraged more frequently on flowers enriched with sodium and showed evidence of other changes to foraging behavior, including greater dietary evenness. These findings are consistent with the “salty nectar hypothesis,” providing evidence for the importance of sodium limitation in pollinators and suggesting that even small nectar constituents can shape plant–pollinator interactions.more » « less
An official website of the United States government
