This paper presents a variational Bayesian inference Neural Network (BNN) approach to quantify uncertainties in matrix function estimation for the state-space linear parameter-varying (LPV) model identification problem using only inputs/outputs data. The proposed method simultaneously estimates states and posteriors of matrix functions given data. In particular, states are estimated by reaching a consensus between an estimator based on past system trajectory and an estimator by recurrent equations of states; posteriors are approximated by minimizing the Kullback–Leibler (KL) divergence between the parameterized posterior distribution and the true posterior of the LPV model parameters. Furthermore, techniques such as transfer learning are explored in this work to reduce computational cost and prevent convergence failure of Bayesian inference. The proposed data-driven method is validated using experimental data for identification of a control-oriented reactivity controlled compression ignition (RCCI) engine model. 
                        more » 
                        « less   
                    
                            
                            Bayesian variable selection for matrix autoregressive models
                        
                    
    
            Abstract A Bayesian method is proposed for variable selection in high-dimensional matrix autoregressive models which reflects and exploits the original matrix structure of data to (a) reduce dimensionality and (b) foster interpretability of multidimensional relationship structures. A compact form of the model is derived which facilitates the estimation procedure and two computational methods for the estimation are proposed: a Markov chain Monte Carlo algorithm and a scalable Bayesian EM algorithm. Being based on the spike-and-slab framework for fast posterior mode identification, the latter enables Bayesian data analysis of matrix-valued time series at large scales. The theoretical properties, comparative performance, and computational efficiency of the proposed model is investigated through simulated examples and an application to a panel of country economic indicators. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2152746
- PAR ID:
- 10494975
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Statistics and Computing
- Volume:
- 34
- Issue:
- 2
- ISSN:
- 0960-3174
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            This article investigates a robust receiver scheme for a single carrier, multiple-input–multiple-output (MIMO) underwater acoustic (UWA) communications, which uses the sparse Bayesian learning algorithm for iterative channel estimation embedded in Turbo equalization (TEQ). We derive a block-wise sparse Bayesian learning framework modeling the spatial correlation of the MIMO UWA channels, where a more robust expectation–maximization algorithm is proposed for updating the joint estimates of channel impulse response, residual noise, and channel covariance matrix. By exploiting the spatially correlated sparsity of MIMO UWA channels and the second-order a priori channel statistics from the training sequence, the proposed Bayesian channel estimator enjoys not only relatively low complexity but also more stable control of the hyperparameters that determine the channel sparsity and recovery accuracy. Moreover, this article proposes a low complexity space-time soft decision feedback equalizer (ST-SDFE) with successive soft interference cancellation. Evaluated by the undersea 2008 Surface Processes and Acoustic Communications Experiment, the improved sparse Bayesian learning channel estimation algorithm outperforms the conventional Bayesian algorithms in terms of the robustness and complexity, while enjoying better estimation accuracy than the orthogonal matching pursuit and the improved proportionate normalized least mean squares algorithms. We have also verified that the proposed ST-SDFE TEQ significantly outperforms the low-complexity minimum mean square error TEQ in terms of the bit error rate and error propagation.more » « less
- 
            Abstract We study the statistical estimation problem of orthogonal group synchronization and rotation group synchronization. The model is $$Y_{ij} = Z_i^* Z_j^{*T} + \sigma W_{ij}\in{\mathbb{R}}^{d\times d}$$ where $$W_{ij}$$ is a Gaussian random matrix and $$Z_i^*$$ is either an orthogonal matrix or a rotation matrix, and each $$Y_{ij}$$ is observed independently with probability $$p$$. We analyze an iterative polar decomposition algorithm for the estimation of $Z^*$ and show it has an error of $$(1+o(1))\frac{\sigma ^2 d(d-1)}{2np}$$ when initialized by spectral methods. A matching minimax lower bound is further established that leads to the optimality of the proposed algorithm as it achieves the exact minimax risk.more » « less
- 
            The problem of state estimation for unobservable distribution systems is considered. A deep learning approach to Bayesian state estimation is proposed for real-time applications. The proposed technique consists of distribution learning of stochastic power injection, a Monte Carlo technique for the training of a deep neural network for state estimation, and a Bayesian bad-data detection and filtering algorithm. Structural characteristics of the deep neural networks are investigated. Simulations illustrate the accuracy of Bayesian state estimation for unobservable systems and demonstrate the benefit of employing a deep neural network. Numerical results show the robustness of Bayesian state estimation against modeling and estimation errors and the presence of bad and missing data. Comparing with pseudo-measurement techniques, direct Bayesian state estimation via deep learning neural network outperforms existing benchmarks.more » « less
- 
            Abstract In this paper, we develop a mixed stochastic approximation expectation‐maximization (MSAEM) algorithm coupled with a Gibbs sampler to compute the marginalized maximum a posteriori estimate (MMAPE) of a confirmatory multidimensional four‐parameter normal ogive (M4PNO) model. The proposed MSAEM algorithm not only has the computational advantages of the stochastic approximation expectation‐maximization (SAEM) algorithm for multidimensional data, but it also alleviates the potential instability caused by label‐switching, and then improved the estimation accuracy. Simulation studies are conducted to illustrate the good performance of the proposed MSAEM method, where MSAEM consistently performs better than SAEM and some other existing methods in multidimensional item response theory. Moreover, the proposed method is applied to a real data set from the 2018 Programme for International Student Assessment (PISA) to demonstrate the usefulness of the 4PNO model as well as MSAEM in practice.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
