Quaternary metal‐chalcogenides combining rare‐earth cations with late transition metal cations are attracting growing attention for their optical properties, such as for solar energy conversion or second harmonic generation. Synthetic explorations of theII3‐I2‐IV2‐Ch8family (II = Eu;I = Cu or Ag;IV = Si, Ch = S or Se) have yielded Eu3Ag2Si2S8(1) and Eu3Cu1.08(1)Si2.42(1)Se8(2). Their structures have been characterized by X‐ray diffraction to form in the noncentrosymmetric space groupI3dand to exhibit two distinct types of mixed‐site occupancies, for the Ag(I) cations in1and mixed Cu(I)/Si(IV) cations in2. In both, the cation disorder occurs to achieve charge balancing with the chalcogenide anions. A high yield of1can be achievedwith optical measurements showing indirect and direct band transitions of ≈2.2(1) and ≈2.4(1) eV, respectively. Its second harmonic generation response is found to be relatively strong, approximately 0.9 × AgGaS2, confirming its noncentrosymmetric structure. Band structure calculations reveal the valence and conduction band edges stem predominantly from the filled Ag(I)/Cu(I)‐based states and empty Si(IV)‐based states, respectively, with additional contributions from the chalcogenide anions. Calculation results also show that cation disorder facilitates a reduction in the antibonding interactions between the Ag(I)/Cu(I)d‐based and chalcogenidep‐based states.
more »
« less
Cation exchange route to a Eu(II)-containing tantalum oxide
Traditional synthetic efforts to prepare Eu(II)-containing oxides have principally involved the use of high temperature reactions starting from EuO or a controlled, highly-reducing, atmosphere. Conversely, chimie douce approaches that are more amenable to the targeted syntheses of new, and potentially metastable, Eu(II)-oxides have yet to be explored. Herein, a cation-exchange route to new Eu(II)-containing oxides, e.g., EuTa4-xO11 (x = 0.04), has been discovered and its structure determined by powder X-ray diffraction (Space group P6322 (#182), a = 6.2539(2) Å; c = 12.3417(2) Å). The compound derives from the cation exchange of Na2Ta4O11, via a reaction with EuBr2 at 1173 K, and replacement by half the number of divalent Eu cations. Rietveld refinements show preferential ordering of the Eu cations over one of the two possible cation sites, i.e., Wyckoff site 2d (~94%; Eu1) versus 2b (~6%; Eu2). Total energy calculations confirm an energetic preference of the Eu cation in the 2d site. Tantalum vacancies of ~1% occur within the layer of Eu cations and TaO6 octahedra, and ~20% partial oxidation of Eu(II) to Eu(III) cations from charge balance considerations. 151Eu M¨ossbauer spectroscopy measured at 78 K found a Eu(II):Eu(III) ratio of 69:31, with a relatively broad line width of the former signal of Γ = 7.6(2) mm s–1. Also, the temperature-dependent magnetic susceptibility could be fitted to a Curie Weiss expression, giving a μeff = 6.2 μB and θCW = 10 K and confirming a mixture of Eu(II)/Eu(III) cations. The optical bandgap of EuTa4-xO11 was found to be ~1.5 eV (indirect), significantly redshifted as compared to ~4.1 eV for Na2Ta4O11. Spin-polarized electronic structure calculations show that this redshift stems from the addition of Eu 4f7 states as a higher-energy valence band. Thus, these results demonstrate a new cation-exchange approach that represents a useful synthetic pathway to new Eu(II)-containing ox- ides for tunable magnetic and optical properties.
more »
« less
- Award ID(s):
- 2317605
- PAR ID:
- 10469613
- Publisher / Repository:
- ScienceDirect
- Date Published:
- Journal Name:
- Journal of Solid State Chemistry
- Volume:
- 328
- Issue:
- C
- ISSN:
- 0022-4596
- Page Range / eLocation ID:
- 124338
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Complex oxides offer rich magnetic and electronic behavior intimately tied to the composition and arrangement of cations within the structure. Rare earth iron garnet films exhibit an anisotropy along the growth direction which has long been theorized to originate from the ordering of different cations on the same crystallographic site. Here, we directly demonstrate the three-dimensional ordering of rare earth ions in pulsed laser deposited (EuxTm1-x)3Fe5O12garnet thin films using both atomically-resolved elemental mapping to visualize cation ordering and X-ray diffraction to detect the resulting order superlattice reflection. We quantify the resulting ordering-induced ‘magnetotaxial’ anisotropy as a function of Eu:Tm ratio using transport measurements, showing an overwhelmingly dominant contribution from magnetotaxial anisotropy that reaches 30 kJ m−3for garnets with x = 0.5. Control of cation ordering on inequivalent sites provides a strategy to control matter on the atomic level and to engineer the magnetic properties of complex oxides.more » « less
-
Abstract Recently, many new, complex, functional oxides have been discovered with the surprising use of topotactic ion‐exchange reactions on close‐packed structures, such as found for wurtzite, rutile, perovskite, and other structure types. Despite a lack of apparent cation‐diffusion pathways in these structure types, synthetic low‐temperature transformations are possible with the interdiffusion and exchange of functional cations possessing ns2stereoactive lone pairs (e. g., Sn(II)) or unpaired ndxelectrons (e. g., Co(II)), targeting new and favorable modulations of their electronic, magnetic, or catalytic properties. This enables a synergistic blending of new functionality to an underlying three‐dimensional connectivity, i. e., [‐M−O‐M‐O‐]n, that is maintained during the transformation. In many cases, this tactic represents the only known pathway to prepare thermodynamically unstable solids that otherwise would commonly decompose by phase segregation, such as that recently applied to the discovery of many new small bandgap semiconductors.more » « less
-
Many technologically useful magnetic oxides are ferrimagnetic insulators, which consist of chemically distinct cations. Here, we examine the spin dynamics of different magnetic cations in ferrimagnetic NiZnAl-ferrite (Ni0.65Zn0.35Al0.8Fe1.2O4) under continuous microwave excitation. Specifically, we employ time-resolved x-ray ferromagnetic resonance to separately probe Fe2+/3+ and Ni2+ cations on different sublattice sites. Our results show that the precessing cation moments retain a rigid, collinear configuration to within ≈2°. Moreover, the effective spin relaxation is identical to within <10% for all magnetic cations in the ferrite. Thus, we validate the oft-assumed “ferromagnetic-like” dynamics in the resonantly driven ferrimagnetic oxide: the magnetic moments from different cations precess as a coherent, collective magnetization, despite the high contents of nonmagnetic Zn2+ and Al3+ diluting the exchange interactions.more » « less
-
Sn(II)-based perovskite oxides, being the subject of longstanding theoretical interest for the past two decades, have been synthesized for the first time in the form of nano eggshell particle morphologies. All past reported synthetic attempts have been unsuccessful owing to their metastable nature, i.e. , by their thermodynamic instability towards decomposition to their constituent oxides. A new approach was discovered that finally provides an effective solution to surmounting this intractable synthetic barrier and which can be the key to unlocking the door to many other predicted metastable oxides. A low-melting KSn2Cl5 salt was utilized to achieve a soft topotactic exchange of Sn(II) cations into a Ba-containing perovskite, i.e., BaHfO3 with particle sizes of ∼350 nm, at a low reaction temperature of 200 °C. The resulting particles exhibit nanoshell-over-nanoshell morphologies, i.e., with SnHfO3 forming as ∼20 nm thick shells over the surfaces of the BaHfO3 eggshell particles. Formation of the metastable SnHfO3 is found to be thermodynamically driven by the co-production of the highly stable BaCl2 and KCl side products. Despite this, total energy calculations show that Sn(II) distorts from the A-site asymmetrically and randomly and the interdiffusion has a negligible impact on the energy of the system (i.e., layered vs. solid solution). Additionally, nano eggshell particle morphologies of BaHfO3 were found to yield highly pure SnHfO3 for the first time, thus circumventing the intrinsic ion-diffusion limits occurring at this low reaction temperature. In summary, these results demonstrate that the metastability of many theoretically predicted Sn(II)-perovskites can be overcome by leveraging the high cohesive energies of the reactants, the exothermic formation of a stable salt side product, and a shortened diffusion pathway for the Sn(II) cations.more » « less
An official website of the United States government

