skip to main content


Title: FAM-Graph: Graph Analytics on Disaggregated Memory
Disaggregated memory is being proposed as a way to provide efficient memory scaling for data intensive applications. High performance interconnect technologies, such as CXL, make disaggregated, fabric-attached-memory (FAM) a viable secondary tier of memory. Previous work on remote memory relies on extending kernel level paging to utilize FAM as an additional storage tier after local memory. These approaches have the advantage of exposing remote memory in application transparent ways that do not require code changes, but they incur large overheads due to the mismatch between the abstraction of a flat virtual address space and the reality of the tiered nature of FAM. In this paper, we present an alternative approach to remote memory based on application-specific objects. We design FAM-Graph - a semi-external graph processing system that leverages application-level properties, such as read only edge data, to efficiently tier data between local and remote memory, and prefetch remote data for local computation. Using several graph algorithms and datasets, we demonstrate that FAM-Graph achieves end-to-end performance within factors of 1–6× of Galois, the state of the art shared memory graph processing system, while using up to 20× less local memory. When Galois is used in conjunction with an OS-level FAM solution, we show that FAM-Graph achieves better end-to-end performance by up to 9× when both systems are configured with the same amount of local memory.  more » « less
Award ID(s):
2016701
NSF-PAR ID:
10469910
Author(s) / Creator(s):
;
Publisher / Repository:
IEEE
Date Published:
ISBN:
978-1-6654-8106-9
Page Range / eLocation ID:
81 to 92
Format(s):
Medium: X
Location:
Lyon, France
Sponsoring Org:
National Science Foundation
More Like this
  1. Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern datacenters, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by “lining up” memory accesses from the application and the GC so that they follow similar memory access paths, thereby (1)reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely-used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely-deployed cloud systems shows MemLiner improves applications’ end-to-end performance by up to 2.5x. 
    more » « less
  2. Approximate nearest neighbor search (ANNS) is a key retrieval technique for vector database and many data center applications, such as person re-identification and recommendation systems. It is also fundamental to retrieval augmented generation (RAG) for large language models (LLM) now. Among all the ANNS algorithms, graph-traversal-based ANNS achieves the highest recall rate. However, as the size of dataset increases, the graph may require hundreds of gigabytes of memory, exceeding the main memory capacity of a single workstation node. Although we can do partitioning and use solid-state drive (SSD) as the backing storage, the limited SSD I/O bandwidth severely degrades the performance of the system. To address this challenge, we present NDSEARCh, a hardware-software co-designed near-data processing (NDP) solution for ANNS processing. NDSeARCH consists of a novel in-storage computing architecture, namely, SEARSSD, that supports the ANNS kernels and leverages logic unit (LUN)-level parallelism inside the NAND flash chips. NDSEARCH also includes a processing model that is customized for NDP and cooperates with SearSSD. The processing model enables us to apply a two-level scheduling to improve the data locality and exploit the internal bandwidth in NDSearch, and a speculative searching mechanism to further accelerate the ANNS workload. Our results show that NDSEARCH improves the throughput by up to 31.7×,14.6×,7.4×, and 2.9× over CPU, GPU, a state-of-the-art SmartSSD-only design, and DeepStore, respectively. NDSEARCH also achieves two orders-of-magnitude higher energy efficiency than CPU and GPU. 
    more » « less
  3. We present Memtrade, the first practical marketplace for disaggregated memory clouds. Clouds introduce a set of unique challenges for resource disaggregation across different tenants, including resource harvesting, isolation, and matching. Memtrade allows producer virtual machines (VMs) to lease both their unallocated memory and allocated-but-idle application memory to remote consumer VMs for a limited period of time. Memtrade does not require any modifications to host-level system software or support from the cloud provider. It harvests producer memory using an application-aware control loop to form a distributed transient remote memory pool with minimal performance impact; it employs a broker to match producers with consumers while satisfying performance constraints; and it exposes the matched memory to consumers through different abstractions. As a proof of concept, we propose two such memory access interfaces for Memtrade consumers -- a transient KV cache for specified applications and a swap interface that is application-transparent. Our evaluation using real-world cluster traces shows that Memtrade provides significant performance benefit for consumers (improving average read latency up to 2.8X) while preserving confidentiality and integrity, with little impact on producer applications (degrading performance by less than 2.1%).

     
    more » « less
  4. As scaling of conventional memory devices has stalled, many high-end computing systems have begun to incorporate alternative memory technologies to meet performance goals. Since these technologies present distinct advantages and tradeoffs compared to conventional DDR* SDRAM, such as higher bandwidth with lower capacity or vice versa, they are typically packaged alongside conventional SDRAM in a heterogeneous memory architecture. To utilize the different types of memory efficiently, new data management strategies are needed to match application usage to the best available memory technology. However, current proposals for managing heterogeneous memories are limited, because they either (1) do not consider high-level application behavior when assigning data to different types of memory or (2) require separate program execution (with a representative input) to collect information about how the application uses memory resources. This work presents a new data management toolset to address the limitations of existing approaches for managing complex memories. It extends the application runtime layer with automated monitoring and management routines that assign application data to the best tier of memory based on previous usage, without any need for source code modification or a separate profiling run. It evaluates this approach on a state-of-the-art server platform with both conventional DDR4 SDRAM and non-volatile Intel Optane DC memory, using both memory-intensive high-performance computing (HPC) applications as well as standard benchmarks. Overall, the results show that this approach improves program performance significantly compared to a standard unguided approach across a variety of workloads and system configurations. The HPC applications exhibit the largest benefits, with speedups ranging from 1.4× to 7× in the best cases. Additionally, we show that this approach achieves similar performance as a comparable offline profiling-based approach after a short startup period, without requiring separate program execution or offline analysis steps. 
    more » « less
  5. null (Ed.)
    Passive remote memory remains the holy grail of disaggregation. Most existing systems for disaggregated memory either use remote memory simply as a backing store, or design special-purpose data structures that require some amount of processing co-resident with the remote memory to manage and apply updates. The few proposals for truly passive remote memory perform well only with read-mostly workloads, rapidly deteriorating in the face of even low levels of write contention. We propose to leverage in-network devices (specifically, a programmable top-of-rack switch) to serialize remote memory accesses and resolve any write conflicts in flight. Our prototype is able to completely avoid write contention in the recently published Clover disaggregated key/value store, delivering a performance boost of almost 50% on our testbed under a mixed read/write workload. 
    more » « less