Recommendation systems have been widely embedded into many Internet services. For example, Meta’s deep learning recommendation model (DLRM) shows high predictive accuracy of click-through rate in processing large-scale embedding tables. The SparseLengthSum (SLS) kernel of the DLRM dominates the inference time of the DLRM due to intensive irregular memory accesses to the embedding vectors. Some prior works directly adopt near-data processing (NDP) solutions to obtain higher memory bandwidth to accelerate SLS. However, their inferior memory hierarchy induces a low performance-cost ratio and fails to fully exploit the data locality. Although some software-managed cache policies were proposed to improve the cache hit rate, the incurred cache miss penalty is unacceptable considering the high overheads of executing the corresponding programs and the communication between the host and the accelerator. To address the issues aforementioned, we proposeEMS-i , an efficient memory system design that integrates Solid State Drive (SSD) into the memory hierarchy using Compute Express Link (CXL) for recommendation system inference. We specialize the caching mechanism according to the characteristics of various DLRM workloads and propose a novel prefetching mechanism to further improve the performance. In addition, we delicately design the inference kernel and develop a customized mapping scheme for SLS operation, considering the multi-level parallelism in SLS and the data locality within a batch of queries. Compared to the state-of-the-art NDP solutions,EMS-i achieves up to 10.9× speedup over RecSSD and the performance comparable to RecNMP with 72% energy savings.EMS-i also saves up to 8.7× and 6.6 × memory cost w.r.t. RecSSD and RecNMP, respectively.
more »
« less
This content will become publicly available on June 29, 2025
NDSEARCH: Accelerating Graph-Traversal-Based Approximate Nearest Neighbor Search through Near Data Processing
Approximate nearest neighbor search (ANNS) is a key retrieval technique for vector database and many data center applications, such as person re-identification and recommendation systems. It is also fundamental to retrieval augmented generation (RAG) for large language models (LLM) now. Among all the ANNS algorithms, graph-traversal-based ANNS achieves the highest recall rate. However, as the size of dataset increases, the graph may require hundreds of gigabytes of memory, exceeding the main memory capacity of a single workstation node. Although we can do partitioning and use solid-state drive (SSD) as the backing storage, the limited SSD I/O bandwidth severely degrades the performance of the system. To address this challenge, we present NDSEARCh, a hardware-software co-designed near-data processing (NDP) solution for ANNS processing. NDSeARCH consists of a novel in-storage computing architecture, namely, SEARSSD, that supports the ANNS kernels and leverages logic unit (LUN)-level parallelism inside the NAND flash chips. NDSEARCH also includes a processing model that is customized for NDP and cooperates with SearSSD. The processing model enables us to apply a two-level scheduling to improve the data locality and exploit the internal bandwidth in NDSearch, and a speculative searching mechanism to further accelerate the ANNS workload. Our results show that NDSEARCH improves the throughput by up to 31.7×,14.6×,7.4×, and 2.9× over CPU, GPU, a state-of-the-art SmartSSD-only design, and DeepStore, respectively. NDSEARCH also achieves two orders-of-magnitude higher energy efficiency than CPU and GPU.
more »
« less
- Award ID(s):
- 1822085
- PAR ID:
- 10534943
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 979-8-3503-2658-1
- Page Range / eLocation ID:
- 368 to 381
- Format(s):
- Medium: X
- Location:
- Buenos Aires, Argentina
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Recent advances in GPU-based manycore accelerators provide the opportunity to efficiently process large-scale graphs on chip. However, real world graphs have a diverse range of topology and connectivity patterns (e.g., degree distributions) that make the design of input-agnostic hardware architectures a challenge. Network-on-Chip (NoC)- based architectures provide a way to overcome this challenge as the architectural topology can be used to approximately model the expected traffic patterns that emerge from graph application workloads. In this paper, we first study the mix of long- and short-range traffic patterns generated on-chip using graph workloads, and subsequently use the findings to adapt the design of an optimal NoC-based architecture. In particular, by leveraging emerging three-dimensional (3D) integration technology, we propose design of a small-world NoC (SWNoC)- enabled manycore GPU architecture, where the placement of the links connecting the streaming multiprocessors (SM) and the memory controllers (MC) follow a power-law distribution. The proposed 3D manycore GPU architecture outperforms the traditional planar (2D) counterparts in both performance and energy consumption. Moreover, by adopting a joint performance-thermal optimization strategy, we address the thermal concerns in a 3D design without noticeably compromising the achievable performance. The 3D integration technology is also leveraged to incorporate Near Data Processing (NDP) to complement the performance benefits introduced by the SWNoC architecture. As graph applications are inherently memory intensive, off-chip data movement gives rise to latency and energy overheads in the presence of external DRAM. In conventional GPU architectures, as the main memory layer is not integrated with the logic, off-chip data movement negatively impacts overall performance and energy consumption. We demonstrate that NDP significantly reduces the overheads associated with such frequent and irregular memory accesses in graph-based applications. The proposed SWNoC-enabled NDP framework that integrates 3D memory (like Micron's HMC) with a massive number of GPU cores achieves 29.5% performance improvement and 30.03% less energy consumption on average compared to a conventional planar Mesh-based design with external DRAM.more » « less
-
null (Ed.)We propose a new framework for computing the embeddings of large-scale graphs on a single machine. A graph embedding is a fixed length vector representation for each node (and/or edge-type) in a graph and has emerged as the de-facto approach to apply modern machine learning on graphs. We identify that current systems for learning the embeddings of large-scale graphs are bottlenecked by data movement, which results in poor resource utilization and inefficient training. These limitations require state-of-the-art systems to distribute training across multiple machines. We propose Marius, a system for efficient training of graph embeddings that leverages partition caching and buffer-aware data orderings to minimize disk access and interleaves data movement with computation to maximize utilization. We compare Marius against two state-of-the-art industrial systems on a diverse array of benchmarks. We demonstrate that Marius achieves the same level of accuracy but is up to one order of magnitude faster. We also show that Marius can scale training to datasets an order of magnitude beyond a single machine's GPU and CPU memory capacity, enabling training of configurations with more than a billion edges and 550 GB of total parameters on a single machine with 16 GB of GPU memory and 64 GB of CPU memory. Marius is open-sourced at www.marius-project.org.more » « less
-
We study training of Graph Neural Networks (GNNs) for large-scale graphs. We revisit the premise of using distributed training for billion-scale graphs and show that for graphs that fit in main memory or the SSD of a single machine, out- of-core pipelined training with a single GPU can outperform state-of-the-art (SoTA) multi-GPU solutions. We introduce MariusGNN, the first system that utilizes the entire storage hierarchy—including disk—for GNN training. MariusGNN introduces a series of data organization and algorithmic contributions that 1) minimize the end-to-end time required for training and 2) ensure that models learned with disk-based training exhibit accuracy similar to those fully trained in memory. We evaluate MariusGNN against SoTA systems for learning GNN models and find that single-GPU training in MariusGNN achieves the same level of accuracy up to 8× faster than multi-GPU training in these systems, thus, introducing an order of magnitude monetary cost reduction. MariusGNN is open-sourced at www.marius-project.org.more » « less
-
Recent advancements in deep learning techniques facilitate intelligent-query support in diverse applications, such as content-based image retrieval and audio texturing. Unlike conventional key-based queries, these intelligent queries lack efficient indexing and require complex compute operations for feature matching. To achieve high-performance intelligent querying against massive datasets, modern computing systems employ GPUs in-conjunction with solid-state drives (SSDs) for fast data access and parallel data processing. However, our characterization with various intelligent-query workloads developed with deep neural networks (DNNs), shows that the storage I/O bandwidth is still the major bottleneck that contributes 56%--90% of the query execution time. To this end, we present DeepStore, an in-storage accelerator architecture for intelligent queries. It consists of (1) energy-efficient in-storage accelerators designed specifically for supporting DNN-based intelligent queries, under the resource constraints in modern SSD controllers; (2) a similarity-based in-storage query cache to exploit the temporal locality of user queries for further performance improvement; and (3) a lightweight in-storage runtime system working as the query engine, which provides a simple software abstraction to support different types of intelligent queries. DeepStore exploits SSD parallelisms with design space exploration for achieving the maximal energy efficiency for in-storage accelerators. We validate DeepStore design with an SSD simulator, and evaluate it with a variety of vision, text, and audio based intelligent queries. Compared with the state-of-the-art GPU+SSD approach, DeepStore improves the query performance by up to 17.7×, and energy-efficiency by up to 78.6×.more » « less