Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern data centers, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking remote memory prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by aligning memory accesses from application and GC threads so that they follow similar memory access paths, thereby (1) reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely deployed cloud systems shows that MemLiner improves applications’ end-to-end performance by up to3.3×and reduces applications’ tail latency by up to220.0×.
more »
« less
FAM-Graph: Graph Analytics on Disaggregated Memory
Disaggregated memory is being proposed as a way to provide efficient memory scaling for data intensive applications. High performance interconnect technologies, such as CXL, make disaggregated, fabric-attached-memory (FAM) a viable secondary tier of memory. Previous work on remote memory relies on extending kernel level paging to utilize FAM as an additional storage tier after local memory. These approaches have the advantage of exposing remote memory in application transparent ways that do not require code changes, but they incur large overheads due to the mismatch between the abstraction of a flat virtual address space and the reality of the tiered nature of FAM. In this paper, we present an alternative approach to remote memory based on application-specific objects. We design FAM-Graph - a semi-external graph processing system that leverages application-level properties, such as read only edge data, to efficiently tier data between local and remote memory, and prefetch remote data for local computation. Using several graph algorithms and datasets, we demonstrate that FAM-Graph achieves end-to-end performance within factors of 1–6× of Galois, the state of the art shared memory graph processing system, while using up to 20× less local memory. When Galois is used in conjunction with an OS-level FAM solution, we show that FAM-Graph achieves better end-to-end performance by up to 9× when both systems are configured with the same amount of local memory.
more »
« less
- Award ID(s):
- 2016701
- PAR ID:
- 10469910
- Publisher / Repository:
- IEEE
- Date Published:
- ISBN:
- 978-1-6654-8106-9
- Page Range / eLocation ID:
- 81 to 92
- Format(s):
- Medium: X
- Location:
- Lyon, France
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
We present Memtrade, the first practical marketplace for disaggregated memory clouds. Clouds introduce a set of unique challenges for resource disaggregation across different tenants, including resource harvesting, isolation, and matching. Memtrade allows producer virtual machines (VMs) to lease both their unallocated memory and allocated-but-idle application memory to remote consumer VMs for a limited period of time. Memtrade does not require any modifications to host-level system software or support from the cloud provider. It harvests producer memory using an application-aware control loop to form a distributed transient remote memory pool with minimal performance impact; it employs a broker to match producers with consumers while satisfying performance constraints; and it exposes the matched memory to consumers through different abstractions. As a proof of concept, we propose two such memory access interfaces for Memtrade consumers -- a transient KV cache for specified applications and a swap interface that is application-transparent. Our evaluation using real-world cluster traces shows that Memtrade provides significant performance benefit for consumers (improving average read latency up to 2.8X) while preserving confidentiality and integrity, with little impact on producer applications (degrading performance by less than 2.1%).more » « less
-
Approximate nearest neighbor search (ANNS) is a key retrieval technique for vector database and many data center applications, such as person re-identification and recommendation systems. It is also fundamental to retrieval augmented generation (RAG) for large language models (LLM) now. Among all the ANNS algorithms, graph-traversal-based ANNS achieves the highest recall rate. However, as the size of dataset increases, the graph may require hundreds of gigabytes of memory, exceeding the main memory capacity of a single workstation node. Although we can do partitioning and use solid-state drive (SSD) as the backing storage, the limited SSD I/O bandwidth severely degrades the performance of the system. To address this challenge, we present NDSEARCh, a hardware-software co-designed near-data processing (NDP) solution for ANNS processing. NDSeARCH consists of a novel in-storage computing architecture, namely, SEARSSD, that supports the ANNS kernels and leverages logic unit (LUN)-level parallelism inside the NAND flash chips. NDSEARCH also includes a processing model that is customized for NDP and cooperates with SearSSD. The processing model enables us to apply a two-level scheduling to improve the data locality and exploit the internal bandwidth in NDSearch, and a speculative searching mechanism to further accelerate the ANNS workload. Our results show that NDSEARCH improves the throughput by up to 31.7×,14.6×,7.4×, and 2.9× over CPU, GPU, a state-of-the-art SmartSSD-only design, and DeepStore, respectively. NDSEARCH also achieves two orders-of-magnitude higher energy efficiency than CPU and GPU.more » « less
-
Far-memory techniques that enable applications to use remote memory are increasingly appealing in modern datacenters, supporting applications’ large memory footprint and improving machines’ resource utilization. Unfortunately, most far-memory techniques focus on OS-level optimizations and are agnostic to managed runtimes and garbage collections (GC) underneath applications written in high-level languages. With different object-access patterns from applications, GC can severely interfere with existing far-memory techniques, breaking prefetching algorithms and causing severe local-memory misses. We developed MemLiner, a runtime technique that improves the performance of far-memory systems by “lining up” memory accesses from the application and the GC so that they follow similar memory access paths, thereby (1)reducing the local-memory working set and (2) improving remote-memory prefetching through simplified memory access patterns. We implemented MemLiner in two widely-used GCs in OpenJDK: G1 and Shenandoah. Our evaluation with a range of widely-deployed cloud systems shows MemLiner improves applications’ end-to-end performance by up to 2.5x.more » « less
-
Processing-in-memory (PIM), where compute is moved closer to memory or data, has been explored to accelerate emerging workloads. Different PIM-based systems have been announced, each offering a unique microarchitectural organization of their compute units, ranging from fixed functional units to programmable general-purpose compute cores near memory. However, one fundamental limitation of PIM is that each compute unit can only access its local memory; access to “remote” memory must occur through the host CPU – potentially limiting application performance scalability. In this work, we first characterize the scalability of real PIM architectures using the UPMEM PIM system. We analyze how the overhead of communicating through the host (instead of providing direct communication between the PIM compute units) can become a bottleneck for collective communications that are commonly used in many workloads. To overcome this inter-PIM bank communication, we propose PIMnet – a PIM interconnection network for PIM banks that provides direct connectivity between compute units and removes the overhead of communicating through the host. PIMnet exploits bandwidth parallelism where communication across the different PIM bank/chips can occur in parallel to maximize communication performance. PIMnet also matches the DRAM packaging hierarchy with a multi-tier network architecture. Unlike traditional interconnection networks, PIMnet is a PIM controlled network where communication is managed by the PIM logic, optimizing collective communications and minimizing the hardware overhead of PIMnet. Our evaluation of PIMnet shows that it provides up to 85× speedup on collective communications and achieves a 11.8× improvement on real applications compared to the baseline PIM.more » « less
An official website of the United States government
