ABSTRACT Deficiencies in knowledge about water quality prevent or obscure progress on a panoply of public health problems globally. Specifically, such lack of information frustrates effective and efficient government regulation to protect the public from contaminated drinking water. In this Practical Paper, we lay out how recent scientific innovations in synthetic biology mean that rapid, at-home tests based on biosensor technology could be used to improve water quality monitoring and regulation, using the example of the U.S. Environmental Protection Agency's Lead and Copper Rule currently under revision. Biosensor tests can be used by non-scientists and the information that biosensor tests generate is relatively cheaper and faster than standard laboratory techniques. As such, they have the potential to make it possible to increase the number and frequency of samples tested. This, in turn, could facilitate more accurate compliance monitoring, justify more protective substantive standards, and more efficiently identify infrastructure priorities. Biosensors can also empower historically underrepresented communities by facilitating the visibility of inequities in lead exposure, help utilities to ensure safe water delivery, and guide policy for identifying and replacing lead-bearing water infrastructure, thereby improving public health. As the technology matures, biosensors have great potential to reveal water quality issues, thereby reducing public health burdens.
more »
« less
A synthesis and review of exacerbated inequities from the February 2021 winter storm (Uri) in Texas and the risks moving forward
A severe winter storm in February 2021 impacted multiple infrastructure systems in Texas, leaving over 13 million people without electricity and/or water, potentially $100 billion in economic damages, and almost 250 lives lost. While the entire state was impacted by temperatures up to 10 °C colder than expected for this time of year, as well as levels of snow and ice accumulation not observed in decades, the responses and outcomes from communities were inconsistent and exacerbated prevailing social and infrastructure inequities that are still impacting those communities. In this contribution, we synthesize a subset of multiple documented inequities stemming from the interdependence of the water, housing, transportation, and communication sectors with the energy sector, and present a summary of actions to address the interdependency of infrastructure system inequities.
more »
« less
- Award ID(s):
- 2129801
- PAR ID:
- 10469924
- Publisher / Repository:
- Progress in Energy
- Date Published:
- Journal Name:
- Progress in Energy
- Volume:
- 5
- Issue:
- 1
- ISSN:
- 2516-1083
- Page Range / eLocation ID:
- 012003
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Social practice theory offers a multidisciplinary perspective on the relationship between infrastructure and wellbeing. One prominent model in practice theory framessystems of provisionas the rules, resources, and structures that enable the organization of social practices, encompassing both material and immaterial aspects of infrastructures. A second well-known model frames social practices in terms of their constituent elements: meanings, materials, and competences. Reconciling these two models, we argue that household capacity to respond to shifting systems of provision to maintain wellbeing is profoundly tied to the dynamics of privilege and inequity. To examine these dynamics, we propose a new analytical tool utilizing the Bourdieuian conceptualization of forms of capital, deepening the ability of social practice theory to address structural inequities by re-examining the question ofwhois able to access specific infrastructures. To illustrate this approach, we examine how households adapted to shifting systems of provision during the COVID-19 pandemic. Using data from 183 households in the Midwestern United States, we apply this tool to analyze adaptations to disruptions of multiple systems of provision, including work, school, food, and health, from February 2020 to August 2021. We highlight how household wellbeing during the pandemic has been impacted by forms of capital available to specific households, even as new social practices surrounding COVID-19 prevention became increasingly politicized. This research provides insight into both acute challenges and resilient social practices involving household consumption, indicating a need for policies that can address structural inequities across multiple systems of provision.more » « less
-
Abstract In Sub-Saharan Africa (SSA), over 75% of households lack on-premises water access, requiring residents to spend time walking to collect water from outside their homes – a time burden that falls disproportionately on women and girls. Climate change is predicted to alter precipitation and temperature patterns in SSA, which could impact household water access. Here, we use spatial first differences to assess the causal effects of weather on water fetching walk time using household survey data (n = 979,759 observations from 31 countries) merged with geo- and temporally-linked precipitation and temperature data over time periods ranging from 7 to 365 days. We find increases in precipitation reduce water fetching times; a 1 cm increase in weekly rainfall over the past year decreases walking time by 3.5 min. Higher temperatures increase walk times, with a 1°C increase in temperature over the past year increasing walking time by 0.76 min. Rural household water fetching times are more impacted by recent weather compared to urban households; however, electricity access in rural communities mitigates the effect. Our findings suggest that future climate change will increase the water fetching burden in SSA, but that co-provision of electricity and water infrastructure may be able to alleviate this burden.more » « less
-
null (Ed.)The digital divide—and, in particular, the homework gap— have been exacerbated by the COVID-19 pandemic, laying bare not only the inequities in broadband Internet access but also how these inequities ultimately affect citizens’ ability to learn, work, and play. Addressing these inequities ultimately requires having holistic, “full stack” data on the nature of the gaps in infrastructure and uptake—from the physical infrastructure (e.g., fiber, cable) to speed and application performance to affordability and neighborhood effects that ultimately affect whether a technology is adopted. This paper surveys how various existing datasets can (and cannot) shed light on these gaps, the limitations of these datasets, what we know from existing data about how the Internet responded to shifts in traffic during COVID-19, and—importantly for the future—what data we need to better understand these problems moving forward and how the research community, policymakers, and the public might gain access to various data. Keywords: digital divide,iInternet, mapping, performancemore » « less
-
Kumar, Bimlesh (Ed.)Austin, Texas is among the most rapidly urbanizing regions in the U.S., posing challenges to the resilience of its water resources. Geochemical differences between stream water from relatively pristine (rural) and impacted (urban) watersheds indicate several distinct controls on stream water compositions, including extent of urbanization, extent of failure of the city’s municipal water infrastructure, and differences in bedrock composition and permeability. We focus here on the largely unstudied evolution of municipal water once it leaves the infrastructure and enters the natural hydrologic system as groundwater and/or surface water. We use the distinct Sr isotope values (87Sr/86Sr) and other compositional differences between municipal waters, natural stream and spring water, limestone bedrock, and soils as tracers of the sources of and processes by which four Austin-area streams and springs acquire their dissolved constituents. These processes include 1) fluid-mixing between municipal and natural surface water and groundwater, 2) multiple mineral-solution reactions, including dissolution and water-rock interaction (WRI) processes of precipitation, incongruent dissolution, and recrystallization, and 3) varying groundwater residence times. Stream water in two urbanized watersheds have high87Sr/86Sr values and ion compositions close to values for municipal water, whereas stream and spring water in two rural watersheds have compositions close to natural stream water. Urbanized stream water compositions can be accounted for by models of municipal water contributions followed by dissolution of bedrock minerals. By contrast, rural stream water compositions are consistent with a model sequence of dissolution followed by extensive WRI with limestone. The results of this study indicate significant contributions to streams from the municipal infrastructure. We find that the evolution of this municipal water in the natural hydrologic system comprises multiple fluid-mixing processes and mineral-solution reactions, which are influenced by differences in bedrock geology. This composite evolution advances our understanding of the complexities of “Urban Stream Syndrome”.more » « less
An official website of the United States government

