Abstract Developing sustainable urban systems is a fundamental societal challenge for the 21st century, and central Texas faces particularly synergistic challenges of a rapidly growing urban population and a projected increasingly drought-prone climate. To assess the history of urbanization impacts on watersheds here, we analyzed 51 cores from bald cypress trees in paired urban and rural watersheds in Austin, Texas. We find a significant contrast between rural and urbanized watersheds. In the rural watershed, tree-ring-width growth histories (“chronologies”) from 1844–2018 significantly and positively correlate (p < 0.01) with (1) one another, and (2) regional instrumental and proxy records of drought. In the urbanized watershed, by contrast, chronologies weakly correlate with one another, with instrumental records of drought, and with the rural chronologies and regional records. Relatively weak drought limitations to urban tree growth are consistent with the significant present-day transfer of municipal water from urban infrastructure by leakage and irrigation to the natural hydrologic system. We infer a significant, long-term contribution from infrastructure to baseflow in urbanized watersheds. In contrast to the common negative impacts of ‘urban stream syndrome’, such sustained baseflow in watersheds with impaired or failing infrastructure may be an unintended positive consequence for stream ecosystems, as a mitigation against projected extended 21st-century droughts. Additionally, riparian trees may serve as a proxy for past impacts of urbanization on natural streams, which may inform sustainable urban development.
more »
« less
This content will become publicly available on December 31, 2025
Geochemical evolution of municipal water in a natural hydrologic system and implications for urban watershed resilience
Austin, Texas is among the most rapidly urbanizing regions in the U.S., posing challenges to the resilience of its water resources. Geochemical differences between stream water from relatively pristine (rural) and impacted (urban) watersheds indicate several distinct controls on stream water compositions, including extent of urbanization, extent of failure of the city’s municipal water infrastructure, and differences in bedrock composition and permeability. We focus here on the largely unstudied evolution of municipal water once it leaves the infrastructure and enters the natural hydrologic system as groundwater and/or surface water. We use the distinct Sr isotope values (87Sr/86Sr) and other compositional differences between municipal waters, natural stream and spring water, limestone bedrock, and soils as tracers of the sources of and processes by which four Austin-area streams and springs acquire their dissolved constituents. These processes include 1) fluid-mixing between municipal and natural surface water and groundwater, 2) multiple mineral-solution reactions, including dissolution and water-rock interaction (WRI) processes of precipitation, incongruent dissolution, and recrystallization, and 3) varying groundwater residence times. Stream water in two urbanized watersheds have high87Sr/86Sr values and ion compositions close to values for municipal water, whereas stream and spring water in two rural watersheds have compositions close to natural stream water. Urbanized stream water compositions can be accounted for by models of municipal water contributions followed by dissolution of bedrock minerals. By contrast, rural stream water compositions are consistent with a model sequence of dissolution followed by extensive WRI with limestone. The results of this study indicate significant contributions to streams from the municipal infrastructure. We find that the evolution of this municipal water in the natural hydrologic system comprises multiple fluid-mixing processes and mineral-solution reactions, which are influenced by differences in bedrock geology. This composite evolution advances our understanding of the complexities of “Urban Stream Syndrome”.
more »
« less
- PAR ID:
- 10589552
- Editor(s):
- Kumar, Bimlesh
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS Water
- Volume:
- 3
- Issue:
- 12
- ISSN:
- 2767-3219
- Page Range / eLocation ID:
- e0000327
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Human activities in urban areas disturb the natural landscape upon which they develop, disrupting pedogenic processes and ultimately limiting the ecosystem services urban soils provide. To better understand the impacts on and resiliency of soils in response to urban development, it is essential to understand the processes by which and degree to which soil physical and chemical properties are altered in urban systems. Here, we apply the source-tracing capabilities of Sr isotopes (87Sr/86Sr) to understand the impacts of urban processes on the composition of soils in eight watersheds in Austin, Texas. We evaluate natural and anthropogenic Sr sources in watersheds spanning a wide range of urbanization, comparing soils by variations in their natural (including mineralogy, thickness, soil type, and watershed) and anthropogenic (including irrigation, soil amendments, and fertilization) characteristics. A strong positive correlation between soil thickness and 87Sr/86Sr is observed among unirrigated soils (R2 = 0.83). In contrast, this relationship is not observed among irrigated soils (R2 = 0.004). 95 % of 42 irrigated soil samples have 87Sr/86Sr values approaching or within the range for municipal supply water. These results indicate soil interaction with municipal water through irrigation and/or water infrastructure leakage. Soils irrigated with municipal water have elevated 87Sr/86Sr values relative to unirrigated soils in seven of eight watersheds. We propose that original soil 87Sr/86Sr values are partially to completely reset by irrigation with municipal water via ion exchange processes. Our results demonstrate that in urban systems, Sr isotopes can serve as an environmental tracer to assess the overprint of urbanization on natural soil characteristics. In the Austin region, resetting of natural soil compositions via urban development is extensive, and the continued expansion of urban areas and irrigation systems may affect the ability of soils to retain nutrients, filter contaminants, and provide other ecosystem services that support environmental resilience.more » « less
-
Abstract Quantifying the routing of snowmelt to surface water is critical for predicting the impacts of atmospheric deposition and changing land use on water quality in montane catchments. To investigate solute sources and streamflow in the montane Provo River watershed (Utah, USA), we used time‐series87Sr/86Sr ratios sampled at three sites (Soapstone, Woodland and Hailstone) across a gradient of bedrock types. Soils are influenced by aeolian dust contributions, with distinct87Sr/86Sr ratios relative to siliciclastic bedrock, providing an opportunity to investigate shallow versus deeper flow paths for controlling water chemistry. At the most upstream site (Soapstone), Sr concentrations averaged ~17 μg/L with minimal dilution during snowmelt suggesting subsurface flow paths dominated streamflow. However, a decrease in87Sr/86Sr ratios from ~0.717 during baseflow to as low as ~0.713 during snowmelt indicated the activation of shallow flow paths through dust‐derived soils. In contrast, downstream sites receiving water inputs from Sr‐rich carbonate bedrock (Woodland and Hailstone) exhibited strong dilution of Sr from ~120 to 20 μg/L and an increase in87Sr/86Sr ratios from ~0.7095 to ~0.712 during snowmelt. A three‐component mixing model using87Sr/86Sr ratios and Sr concentrations at Soapstone showed water inputs were dominated by direct snowmelt and flushed soil water during runoff and groundwater during baseflow. At Woodland and Hailstone, a two‐component mixing model showed that the river was a mixture of groundwater and up to 75% upstream channel water during snowmelt. Our findings highlight the importance of flushed soil water for controlling stream water discharge and chemistry during snowmelt, with the signal from the upstream site propagating downstream in a nested catchment. Further, aeolian dust contributes to the solute chemistry of montane streams with potential impacts on water quality along shallow flow paths. Potential contaminants in these surface soils (e.g., Pb deposition in dust) may have significant impacts on water quality during snowmelt runoff.more » « less
-
Abstract The high primary porosity and permeability of eogenetic karst aquifers permit water recharged through secondary dissolution features to be temporarily stored in aquifer matrix porosity. The recharged water contains elevated dissolved organic carbon (DOC) concentrations that, when oxidized, enhance limestone dissolution and impact carbon cycling. We evaluate the relationship between DOC oxidation and limestone dissolution using observations at a stream sink‐rise system and reversing spring in the Floridan aquifer, north‐central Florida, USA, where subsurface residence times of recharged water are days and months, respectively. We estimate water chemical compositions during surface water‐groundwater interactions at these two systems with mixing models of surface water and groundwater compositions and compare them with measured DOC, dissolved inorganic carbon (DIC), Ca2+and dissolved organic nitrogen (DON) concentrations. Differences between measured and modelled concentrations represent net changes that can be attributed to calcite dissolution and redox reactions, including DOC oxidation. DOC losses and Ca2+gains exhibit significant (p < 0.01) inverse linear correlations at both the reversing spring (slope = −0.9, r2 = 0.99) and the sink‐rise system (slope = −0.4, r2 = 0.72). DOC oxidation in both systems was associated with decreases in the molar C:N ratio (DOC:DON). Significant (p < 0.01) positive linear correlations between increases in Ca2+and DIC concentrations after correcting for DIC derived from calcite dissolution occurred at both the reversing spring (slope = 1.3, r2 = 0.99) and the sink‐rise system (slope = 1.61, r2 = 0.75). Greater deviations from the expected slope of −1 or +1 at the sink‐rise system than at the reversing spring indicate DOC oxidation contributes less dissolution at the sink‐rise system than at the reversing spring, likely from shorter storage in the subsurface. A portion of the deviation from expected slope values can be explained by the dissolution of Mg‐rich carbonate or dolomite rather than pure calcite dissolution. Despite this, slope values reflect kinetic effects controlling incomplete consumption of carbonic acid during dissolution reactions.more » « less
-
Abstract Eocene strata of the Elko Formation record lacustrine deposition within the Nevada hinterland of the North American Cordillera. We present a detailed geochemical stratigraphy enabled by high‐sampling‐resolution geochronology from lacus trine limestone and interbedded volcanic rocks of the Elko Formation. Two intervals of lacustrine deposition, an early Eocene “Lake Adobe” of limited aerial extent and a laterally extensive middle Eocene “Lake Elko,” are separated by ∼5 m.y. of apparent unconformity. Sediments deposited in the apparently short‐lived (49.5–48.5 Ma) early Eocene Lake Adobe exhibit high‐amplitude covariation of δ18O, δ13C and87Sr/86Sr, which suggests a dynamically changing catchment and precipitation regime. Lake Elko formed during the middle Eocene, and its strata record three geochemically distinct phases, indicating it was a single interconnected water body that became increasingly evaporative over time. The lower Elko Formation (44.0–42.5 Ma) was deposited in a freshwater lake. Middle Elko Formation (42.5–41.2 Ma) lithofacies and geochemistry suggest that an increasingly saline and alkaline Lake Elko experienced salinity stratification‐induced hypolimnion disoxia and burial of12C‐rich organic matter. The upper Elko Formation (41.2–40.5 Ma) records a shallow final phase of Lake Elko that experienced short residence times and a breakdown in stratification. A sharp decline of87Sr/86Sr in the upper Elko Formation reflects an increasing aerial extent of low‐87Sr/86Sr volcanic deposits from nearby calderas. Middle Eocene strata record ponding of paleodrainage, increasing hydrologic isolation and volcanism, consistent with progressive north to south removal of the Farallon flat slab and/or delamination of the lower lithospheric mantle of the North American plate.more » « less
An official website of the United States government
