In this study, a hybrid predictive model is used to predict 3D asymmetric lifting motion and assess potential musculoskeletal lower back injuries for asymmetric lifting tasks. The hybrid model has two modules: a skeletal module and an OpenSim musculoskeletal module. The skeletal module consists of a dynamic joint strength based 40 degrees of freedom spatial skeletal model. The skeletal module can predict the lifting motion, ground reaction forces (GRFs), and center of pressure (COP) trajectory using an inverse dynamics based optimization method. The equations of motion are built by recursive Lagrangian dynamics. The musculoskeletal module consists of a 324-muscle-actuated full-body lumbar spine model. Based on the generated kinematics, GRFs and COP data from the skeletal module, the musculoskeletal module estimates muscle activations using static optimization and joint reaction forces through the joint reaction analysis tool. Muscle activation results between simulated and experimental EMG are compared to validate the model. Finally, potential lower back injuries are evaluated for a specific-weight asymmetric lifting task. The shear and compression spine loads are compared to NIOSH recommended limits. At the beginning of the dynamic lifting process, the simulated compressive spine load beyond the NIOSH action limit but less than the permissible limit. This is due to the fatigue factors considered in NIOSH lifting equation.
We explored the feasibility of using biomechanical simulations to predict altered spinal forces resulting from wearing a back-support exoskeleton (BSE) during repetitive lifting tasks. Twenty (10M, 10F) young, healthy participants completed repetitive lifting task, while wearing a BSE (‘with EXO’) and without wearing a BSE (‘without EXO’). Spinal forces were estimated by applying the BSE torque profile to body kinematics measured in ‘with EXO’ condition, while spinal forces were simulated by applying the same torque profile to body kinematics measured in ‘without EXO’ condition. Simulated compression force was higher than estimated compression force, probably due to lower trunk flexion angle in ‘without EXO’ condition. Such differences were larger among women than among men. However, simulated shear force was comparable with estimated shear force. Future works further need to compare simulated and estimated spinal forces for different BSEs (e.g., soft BSE), asymmetric lifting tasks, and different age group.
more » « less- Award ID(s):
- 2242610
- PAR ID:
- 10469984
- Publisher / Repository:
- SAGE Publications
- Date Published:
- Journal Name:
- Proceedings of the Human Factors and Ergonomics Society Annual Meeting
- Volume:
- 67
- Issue:
- 1
- ISSN:
- 1071-1813
- Format(s):
- Medium: X Size: p. 842-844
- Size(s):
- p. 842-844
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract In this study, a 13 degrees of freedom (DOFs) three-dimensional (3D) human arm model and a 10 DOFs 3D robotic arm model are used to validate the grasping force for human-robot lifting motion prediction. The human arm and robotic arm are modeled in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The human-box and robot-box interactions are characterized as a collection of grasping forces. The joint torque squares of human arm and robot arm are minimized subjected to physics and task constraints. The design variables include (1) control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box; and (2) the discretized grasping forces during lifting. Both numerical and experimental human-robot liftings were performed with a 2 kg box. The simulation reports the human arm’s joint angle profiles, joint torque profiles, and grasping force profiles. The comparisons of the joint angle profiles and grasping force profiles between experiment and simulation are presented. The simulated joint angle profiles have similar trends to the experimental data. It is concluded that human and robot share the load during lifting process, and the predicted human grasping force matches the measured experimental grasping force reasonably well.
-
In this study, a 3D asymmetric lifting motion is predicted by using a hybrid predictive model to prevent potential musculoskeletal lower back injuries for asymmetric lifting tasks. The hybrid model has two modules: a skeletal module and an OpenSim musculoskeletal module. The skeletal module consists of a dynamic joint strength based 40 degrees of freedom spatial skeletal model. The skeletal module can predict the lifting motion, ground reaction forces (GRFs), and center of pressure (COP) trajectory using an inverse dynamics-based motion optimization method. The musculoskeletal module consists of a 324-muscle-actuated full-body lumbar spine model. Based on the predicted kinematics, GRFs and COP data from the skeletal module, the musculoskeletal module estimates muscle activations using static optimization and joint reaction forces through the joint reaction analysis tool in OpenSim. The predicted asymmetric motion and GRFs are validated with experimental data. Muscle activation results between the simulated and experimental EMG are also compared to validate the model. Finally, the shear and compression spine loads are compared to NIOSH recommended limits. The differences between asymmetric and symmetric liftings are also compared.
-
Passive trunk exoskeletons support the human body with mechanical elements like springs and trunk compression, allowing them to guide motion and relieve the load on the spine. However, to provide appropriate support, elements of the exoskeleton (e.g., degree of compression) should be intelligently adapted to the current task. As it is not currently clear how adjusting different exoskeleton elements affects the wearer, this study preliminarily examines the effects of simultaneously adjusting both exoskeletal spinal column stiffness and trunk compression in a passive trunk exoskeleton. Six participants performed four dynamic tasks (walking, sit-to-stand, lifting a 20-lb box, lifting a 40-lb box) and experienced unexpected perturbations both without the exoskeleton and in six exoskeleton configurations corresponding to two compression levels and three stiffness levels. While results are preliminary due to the small sample size and relatively small increases in stiffness, they indicate that both compression and stiffness may affect kinematics and electromyography, that the effects may differ between activities, and that there may be interaction effects between stiffness and compression. As the next step, we will conduct a larger study with the same protocol more participants and larger stiffness increases to systematically evaluate the effects of different exoskeleton characteristics on the wearer.Clinical Relevance- Trunk exoskeletons can support wearers during a variety of different tasks, but their configuration may need to be intelligently adjusted to provide appropriate support. This pilot study provides information about the effects of exoskeleton back stiffness and trunk compression on the wearer, which can be used as a basis for more effective device design and usage.more » « less
-
Abstract In this paper, an optimization-based dynamic modeling method is used for human-robot lifting motion prediction. The three-dimensional (3D) human arm model has 13 degrees of freedom (DOFs) and the 3D robotic arm (Sawyer robotic arm) has 10 DOFs. The human arm and robotic arm are built in Denavit-Hartenberg (DH) representation. In addition, the 3D box is modeled as a floating-base rigid body with 6 global DOFs. The interactions between human arm and box, and robot and box are modeled as a set of grasping forces which are treated as unknowns (design variables) in the optimization formulation. The inverse dynamic optimization is used to simulate the lifting motion where the summation of joint torque squares of human arm is minimized subjected to physical and task constraints. The design variables are control points of cubic B-splines of joint angle profiles of the human arm, robotic arm, and box, and the box grasping forces at each time point. A numerical example is simulated for huma-robot lifting with a 10 Kg box. The human and robotic arms’ joint angle, joint torque, and grasping force profiles are reported. These optimal outputs can be used as references to control the human-robot collaborative lifting task.