skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Methods of incorporation of new reaction products in thermodynamic databases of cementitious systems
Strategic blending of supplementary cementitious materials (SCMs) into ordinary portland cement (OPC) helps reduce energy use and greenhouse gas emissions from concrete production. Expanding thermodynamic databases to include new reaction products from blended cements improves computational approaches used to understand the impact of blending SCMs with cement. Determination of thermodynamic parameters of cement reaction products based on temperature-dependent solubility is widely used in cement research; however, assumptions, limitations, and potential errors due to intercorrelation of the thermodynamic parameters in these calculation methods are rarely discussed. Here, methods for obtaining thermodynamic parameters are critically reviewed, including discussion of experimental validation. The discussion herein provides useful guidance to improve and validate the process of determining thermodynamic parameters of new reaction products from SCM-OPC reactions.  more » « less
Award ID(s):
1903457
PAR ID:
10470103
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
RILEM
Date Published:
Journal Name:
RILEM Technical Letters
Volume:
7
ISSN:
2518-0231
Page Range / eLocation ID:
189 to 198
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The alkali–silica reaction (ASR) is a critical concern for concrete durability, yet its assessment remains challenging and directly impacts mixture design decisions. This review shows that the inconsistencies are more prevalent in mitigation evaluations compared to aggregate reactivity assessments, mainly due to the chemical variations in supplementary cementitious materials (SCMs). A validated framework is suggested to determine the optimal SCM replacement levels for ASR mitigation based on extensive field data, offering direct guidance for mix design decisions involving potentially reactive aggregates. The combination of the accelerated mortar bar test (AMBT) and the miniature concrete prism test (MCPT) is shown to be a reliable alternative for the concrete prism test (CPT) in aggregate reactivity. Also, their extended versions, AMBT (28-day) and MCPT (84-day), can be applied for SCMs mitigation evaluation. Given the slower reactivity of SCMs compared to ordinary Portland cement (OPC), the importance of incorporating indirect test methods, such as the modified R3 test and bulk resistivity is underscored. In addition, emerging sustainability shifts further complicate ASR assessment, including the adoption of Portland limestone cement (PLC), the use of seawater in concrete, and the declining availability of fly ash (FA) and slag. These changes call for updated ASR testing specifications and increased research into natural pozzolans (NPs) as promising SCMs for future ASR mitigation. 
    more » « less
  2. Identification and rapid characterization of novel supplementary cementitious materials (SCMs) is a critical need, driven by shortfalls in conventional SCMs. In this study, we present a discussion of recently developed reactivity tests – the R3 test, the modified R3 test, the lime strength test, and the bulk resistivity index test. These tests measure reactivity parameters such as heat release, bound water, calcium hydroxide consumption, strength, and bulk resistivity. All tests can screen inert from reactive materials. To additionally differentiate pozzolanic and latent hydraulic materials, two parameters, for example, calcium hydroxide consumption and heat release, are needed. The influences of SCM bulk chemistry, amorphous content, and fineness on measured reactivity are outlined. Reactivity test outputs can predict strength and durability of cement paste/mortar/concrete; however, caution must be exercised as these properties are influenced by a variety of other factors independent of reactivity. Thoughts are provided on using reactivity tests to screen materials for concrete durability. 
    more » « less
  3. Calcium aluminate cement (CAC) has been explored as a sustainable alternative to Portland cement, the most widely used type of cement. However, the hydration reaction and mechanical properties of CAC can be influenced by various factors such as water content, Li2CO3 content, and age. Due to the complex interactions between the precursors in CAC, traditional analytical models have struggled to predict CAC binders’ compressive strength and porosity accurately. To overcome this limitation, this study utilizes machine learning (ML) to predict the properties of CAC. The study begins by using thermodynamic simulations to determine the phase assemblages of CAC at different ages. The XGBoost model is then used to predict the compressive strength, porosity, and hydration products of CAC based on the mixture design and age. The XGBoost model is also used to evaluate the influence of input parameters on the compressive strength and porosity of CAC. Based on the results of this analysis, a closed-form analytical model is developed to predict the compressive strength and porosity of CAC accurately. Overall, the study demonstrates that ML can be effectively used to predict the properties of CAC binders, providing a valuable tool for researchers and practitioners in the field of cement science. 
    more » « less
  4. Although the high efficiency of coupled lithium and saturated metakaolin in alkali-silica reaction mitigation has been documented, its influence on cement hydration remains uninvestigated. In this study, saturated metakaolin with varying degrees of saturation and its combined influence with lithium on the hydration kinetics, phase evolution, and development of microstructure and molecular structures of hydration products in the blended cement composite was investigated. The experimental and thermodynamic modeling results indicate the synergistic effect between saturated metakaolin and lithium in enhancing the hydration of cement, interaction between metakaolin and cement, incorporation of Al in the silicate chains, and precipitations of Al-rich phases. In the blended cement matrix, the dissolution of metakaolin, formation of calcium silicate hydrates with incorporated aluminum (C-(A)-S-H), and precipitation of strätlingite are improved by 19.6%, 17.6%, and 20.0%, respectively, and the formation of cubic siliceous hydrogarnet was triggered. 
    more » « less
  5. Abstract The hydration of the two most reactive phases of ordinary Portland cement (OPC), tricalcium silicate (C3S), and tricalcium aluminate (C3A) is successfully halted when the activity of water () falls below critical thresholds of 0.70 and 0.45, respectively. It has been established that the reduction in relative humidity (RH) and suppresses the hydration of all anhydrous phases in OPC, including less explored phases like dicalcium silicate, that is, belite (β‐C2S). However, the degree of suppression, that is, the critical threshold, for β‐C2S, standalone has yet to be established. This study utilizes isothermal microcalorimetry and X‐ray diffraction techniques to elucidate the influence ofon the hydration of‐C2S suspensions via incremental replacements of water with isopropanol (IPA). Experimentally, this study shows that with increasing IPA replacements, hydration is increasingly suppressed until eventually brought to a halt at a critical threshold of approximately 27.7% IPA on a weight basis (wt.%IPA). From thermodynamic estimations, the exact criticalthreshold and solubility product constant of‐C2S () are established as 0.913 and 10−12.68, respectively. This study enables enhanced understanding of β‐C2S reactivity and provides thermodynamic parameters during the hydration of β‐C2S‐containing cementitious systems such as OPC‐based and calcium aluminate‐based systems. 
    more » « less