skip to main content


Title: Carbonation rate of alkali-activated concretes and high-volume SCM concretes: a literature data analysis by RILEM TC 281-CCC
Abstract

The current understanding of the carbonation and the prediction of the carbonation rate of alkali-activated concretes is complicatedinter aliaby the wide range of binder chemistries used and testing conditions adopted. To overcome some of the limitations of individual studies and to identify general correlations between mix design parameters and carbonation resistance, the RILEM TC 281-CCC ‘Carbonation of Concrete with Supplementary Cementitious Materials’ Working Group 6 compiled and analysed carbonation data for alkali-activated concretes and mortars from the literature. For comparison purposes, data for blended Portland cement-based concretes with a high percentage of SCMs (≥ 66% of the binder) were also included in the database. The analysis indicates that water/CaO ratio and water/binder ratio exert an influence on the carbonation resistance of alkali-activated concretes; however, these parameters are not good indicators of the carbonation resistance when considered individually. A better indicator of the carbonation resistance of alkali-activated concretes under conditions approximating natural carbonation appears to be their water/(CaO + MgOeq + Na2Oeq + K2Oeq) ratio, where the subscript ‘eq’ indicates an equivalent amount based on molar masses. Nevertheless, this ratio can serve as approximate indicator at best, as other parameters also affect the carbonation resistance of alkali-activated concretes. In addition, the analysis of the database points to peculiarities of accelerated tests using elevated CO2concentrations for low-Ca alkali-activated concretes, indicating that even at the relatively modest concentration of 1% CO2, accelerated testing may lead to inaccurate predictions of the carbonation resistance under natural exposure conditions.

 
more » « less
Award ID(s):
1903457
NSF-PAR ID:
10470104
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
RILEM
Date Published:
Journal Name:
Materials and Structures
Volume:
55
Issue:
8
ISSN:
1359-5997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Glass for pharmaceutical packaging requires high chemical durability for the safe storage and distribution of newly developed medicines. In borosilicate pharmaceutical glasses which typically contain a mixture of different modifier ions (alkali or alkaline earth), the dependence of the chemical durability on alkaline earth oxide concentrations is not well understood. Here, we have designed a series of borosilicate glasses with systematic substitutions of CaO with MgO while keeping their total concentrations at 13 mol% and a fixed Na2O concentration of 12.7 mol%. We used these glasses to investigate the influence ofR = [MgO]/([MgO] + [CaO]) on the resistance to aqueous corrosion at 80°C for 40 days. It was found that this type of borosilicate glass undergoes both leaching of modifier ions through an ion exchange process and etching of the glass network, leading to dissolution of the glass surface. Based on the concentration analysis of the Si and B species dissolved into the solution phase, the dissolved layer thickness was found to increase from ~100 to ~170 nm asRincreases from 0 to 1. The depth profiling analysis of the glasses retrieved from the solution showed that the concentration of modifier ions (Na+, Ca2+, and Mg2+) at the interface between the solution and the corroded glass surface decreased to around 40%–60% of the corresponding bulk concentrations, regardless ofRand the leaching of modifier cations resulted in a silica‐rich layer in the surface. The leaching of Ca2+and Mg2+ions occurred within ~50 and <25 nm, respectively, from the glass surface and this thickness was not a strong function ofR. The leaching of Na+ions varied monotonically; the thickness of the Na+depletion layer increased from ~100 nm atR = 0 to ~200 nm atR = 1. Vibrational spectroscopy analysis suggested that the partial depletion of the ions may have caused some degree of the network re‐arrangement or re‐polymerization in the corroded layer. Overall, these results suggested that for the borosilicate glass, replacing [CaO] with [MgO] deteriorates the chemical durability in aqueous solution.

     
    more » « less
  2. Abstract

    Efforts to reduce the carbon footprint associated with cement and concrete production have resulted in a number of promising lower‐emission alternatives. Still, research has emphasized a small subset of potentially useful precursor materials. With the goal of expanding the precursor pool, this work presents results of parallel literature mining and rate modeling activities. As a result of literature mining, materials with appropriate SiO2, Al2O3, and CaO concentrations were assembled into a comprehensive, representative ternary diagram. 23 000+ materials were extracted from 7000 journal articles, and 7500 materials from 6000 articles with 80 ≤ SiO2 + Al2O3 + CaO ≤105 wt% automatically classified. Both supervised and semi‐supervised models were used for dissolution rate prediction of glassy materials with all models pulling from a single data set (n = 802 reported dissolution rates from 105 different glasses). Supervised modeling utilized linear and decision tree regressions to determine features most predictive of dissolution rate, resulting in log‐linear relationships between rate and pH, inverse temperature (1/K), and non‐bridging oxygen per tetrahedron (NBO/T). Semi‐supervised modeling was observed to be more robust to broader feature inclusion, providing similar predictive ability with a relatively larger set of descriptive features. Most importantly, results indicated that models trained on data from disparate scientific communities were adequately predictive (RMSE ≈ 1), particularly under pH ≥7 conditions relevant to the cement and alkali activation communities.

     
    more » « less
  3. Abstract

    Synthetic hydrotalcites were produced by a co‐precipitation method. The hydrotalcites are represented by the general formula [MII(1‐x)MIII(x)(OH)2][An−]x/n·zH2O, where MIIis a divalent cation (eg, Mg2+or Ca2+), MIIIis a trivalent cation (eg, Al3+) and An−is the interlayer anion. Herein, MII = Mg, and MIII = Al such that [Mg/Al] = [2, 3] (atomic units) and An−, represents intercalant species including: OH, SO42−and CO32−anions. The thermochemical data of each compound including their solubility constants (Kso), density and molar volume were quantified at T = 25 ± 0.5°C, andP = 1 bar. The solubilities of the synthetic hydrotalcites, irrespective of their divalent‐trivalent cation partitioning ratio, scaled as CO32− < SO42− < OH; in order of decreasing solubility. The type of anion, very slightly, affected the solubility with less than ±1 log unit of variation for [Mg/Al] = 2, and ±2 log units of variation for [Mg/Al] = 3. The solubilities of these phases were strongly correlated with that of gibbsite (Al(OH)3); such that activity of the [AlO2] species wassolubility determiningwith increasing pH. The tabulated thermodynamic data were used to construct solid‐solution models for phases encompassing both cation distribution ratios and to calculate stable phase equilibria relevant to alkali‐activated slag (AAS) systems for diverse activator compositions.

     
    more » « less
  4. Abstract

    Sorption-enhanced steam reforming (SESR) of toluene (SESRT) using catalytic CO2sorbents is a promising route to convert the aromatic tar byproducts formed in lignocellulosic biomass gasification into hydrogen (H2) or H2-rich syngas. Commonly used sorbents such as CaO are effective in capturing CO2initially but are prone to lose their sorption capacity over repeated cycles due to sintering at high temperatures. Herein, we present a demonstration of SESRT using A- and B-site doped Sr1−xA’xFe1−yB’yO3−δ(A’ = Ba, Ca; B’ = Co) perovskites in a chemical looping scheme. We found that surface impregnation of 5–10 mol% Ni on the perovskite was effective in improving toluene conversion. However, upon cycling, the impregnated Ni tends to migrate into the bulk and lose activity. This prompted the adoption of a dual bed configuration using a pre-bed of NiO/γ–Al2O3catalyst upstream of the sorbent. A comparison is made between isothermal operation and a more traditional temperature-swing mode, where for the latter, an average sorption capacity of ∼38% was witnessed over five SESR cycles with H2-rich product syngas evidenced by a ratio of H2: COx> 4.0. XRD analysis of fresh and cycled samples of Sr0.25Ba0.75Fe0.375Co0.625O3-δreveal that this material is an effective phase transition sorbent—capable of cyclically capturing and releasing CO2without irreversible phase changes occurring.

     
    more » « less
  5. Abstract

    Portlandite (Ca(OH)2; also known as calcium hydroxide or hydrated lime), an archetypal alkaline solid, interacts with carbon dioxide (CO2) via a classic acid–base “carbonation” reaction to produce a salt (calcium carbonate: CaCO3) that functions as a low‐carbon cementation agent, and water. Herein, we revisit the effects of reaction temperature, relative humidity (RH), and CO2concentration on the carbonation of portlandite in the form of finely divided particulates and compacted monoliths. Special focus is paid to uncover the influences of the moisture state (i.e., the presence of adsorbed and/or liquid water), moisture content and the surface area‐to‐volume ratio (sa/v, mm−1) of reactants on the extent of carbonation. In general, increasing RH more significantly impacts the rate and thermodynamics of carbonation reactions, leading to high(er) conversion regardless of prior exposure history. This mitigated the effects (if any) of allegedly denser, less porous carbonate surface layers formed at lower RH. In monolithic compacts, microstructural (i.e., mass‐transfer) constraints particularly hindered the progress of carbonation due to pore blocking by liquid water in compacts with limited surface area to volume ratios. These mechanistic insights into portlandite's carbonation inform processing routes for the production of cementation agents that seek to utilize CO2borne in dilute (≤30 mol%) post‐combustion flue gas streams.

     
    more » « less