skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Theoretical CO2 Sequestration Potential of Pervious Concrete
Pervious concrete, which has recently found new applications in buildings, is both energy- and carbon-intensive to manufacture. However, similar to normal concrete, some of the initial CO2 emissions associated with pervious concrete can be sequestered through a process known as carbonation. In this work, the theoretical formulation and application of a mathematical model for estimating the carbon dioxide (CO2) sequestration potential of pervious concrete is presented. Using principles of cement and carbonation chemistry, the model related mixture proportions of pervious concretes to their theoretical in situ CO2 sequestration potential. The model was subsequently employed in a screening life cycle assessment (LCA) to quantify the percentage of recoverable CO2 emissions—namely, the ratio of in situ sequesterable CO2 to initial cradle-to-gate CO2 emissions—for common pervious concrete mixtures. Results suggest that natural carbonation can recover up to 12% of initial CO2 emissions and that CO2 sequestration potential is maximized for pervious concrete mixtures with (i) lower water-to-cement ratios, (ii) higher compressive strengths, (iii) lower porosities, and (iv) lower hydraulic conductivities. However, LCA results elucidate that mixtures with maximum CO2 sequestration potential (i.e., mixtures with high cement contents and CO2 recoverability) emit more CO2 from a net-emissions perspective, despite their enhanced in situ CO2 sequestration potential.  more » « less
Award ID(s):
1562557
PAR ID:
10174022
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Infrastructures
Volume:
4
Issue:
1
ISSN:
2412-3811
Page Range / eLocation ID:
12
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Methods to sequester and store atmospheric CO2 are critical to combat climate change. Alkaline-rich bioashes are potential carbon fixing materials. This work investigates potential co-benefits from mineralizing carbon in biomass ashes and partially replacing high embodied greenhouse gas (GHG) Portland cement (PC) in cement-based materials with these ashes. Specifically, rice hull ash (RHA), wheat straw ash (WSA), and sugarcane bagasse ash (SBA) were treated to mineralize carbon, and their experimental carbon content was compared to modeled potential carbonation. To understand changes in the cement-based storage materials, mortars made with CO2-treated WSA and RHA were experimentally compared to PC-only mortars and mortars made with ashes without prior CO2 treatment. Life cycle assessment methodology was applied to understand potential reductions in GHG emissions. The modeled carbonation was ∼18 g-CO2/kg-RHA and ∼180 g-CO2/kg-WSA. Ashes oxidized at 500 °C had the largest measured carbon content (5.4 g-carbon/kg-RHA and 35.3 g-carbon/kg-WSA). This carbon appeared to be predominantly residual from the biomass. Isothermal calorimetry showed RHA-PC pastes had similar heat of hydration to PC-pastes, while WSA-PC pastes exhibited an early (at ∼1.5 min) endothermic dip. Mortars with 5 % and 15 % RHA replacement had 1–12 % higher compressive strength at 28 days than PC-only mortars, and milled WSA mortars with 5 % replacement had 3 % higher strength. A loss in strength was noted for the milled 15 % WSA, the CO2-treated 5 %, and the 15 % WSA mortars. Modeled reductions in GHG emissions from CO2-treated ashes were, however, marginal (<1 %) relative to the untreated ashes. 
    more » « less
  2. Among many anthropogenic sources of greenhouse gases (GHG), landfill emissions, consisting of methane (CH4) and carbon dioxide (CO2), are one of the major contributors of anthropogenic GHG. In recent years, various innovative landfill biocovers have been investigated and developed to mitigate the emissions of methane (CH4) from municipal solid waste (MSW) landfills. However, the problem of CO2 emissions [which constitute about 40% of landfill gas (LFG)] from MSW landfills still remains unresolved. An innovative cover system which consists of basic oxygen furnace (BOF) slag with biochar amended soil is being developed to mitigate CH4 and CO2 emissions from landfills. The biochar amended soil is effective in mitigating CH4 emissions by microbial methane oxidation, while BOF slag could be effective in sequestering CO2 emissions by carbonation mechanisms. However, the properties of BOF slag vary based on several factors such as mineralogical composition of slag, particle size, moisture content, and temperature. In this study, CO2 sequestration potential of BOF slag was evaluated under synthetic LFG condition. The performance of the BOF slag in sequestering CO2 under different moisture condition was also examined. The results showed that BOF slag can sequester substantial amount of CO2 under LFG condition. The study also enlightened the importance of moisture for initiating carbonation reaction; however, the moisture alone was not the controlling parameter for CO2 sequestration. The mineralogy of the BOF slag plays an important role in determining CO2 sequestration capacity of the slag. 
    more » « less
  3. Fugitive methane (CH4) and carbon dioxide (CO2) emissions at municipal solid waste (MSW) landfills constitute one of the major anthropogenic sources of greenhouse gas (GHG) emissions to the atmosphere. In recent years, biocovers involving the addition of organic-rich amendments to landfill cover soils is proposed to promote microbial oxidation of CH4 to CO2. However, most of the organic amendments used have limitations. Biochar, a solid byproduct obtained from gasification of biomass under anoxic or low oxygen conditions, has characteristics that are favorable for enhanced microbial oxidation in landfill covers. Recent investigations have shown the significant potential of biochar-amended cover soils in mitigating the CH4 emissions from MSW landfills. Although the CH4 emissions are mitigated, there is still considerable amount of CO2 that is emitted to the atmosphere as a result of microbial oxidation of CH4 in landfill covers as well as the CO2 derived from MSW decomposition. Basic oxygen furnace (BOF) slag is a product of steel making has great potential for CO2 sequestration due to its strong alkaline buffering and high carbonation capacity. In an ongoing project, funded by the U.S. National Science Foundation, the potential use of BOF slag in landfill covers along with biochar-amended soils to mitigate both CH4 and CO2 emissions is being investigated. This paper presents the initial results from this study and it includes detailed physical and chemical and leachability characteristics of BOF slag, and a series of batch tests conducted on BOF slag to determine its CH4 and CO2 uptake capacity. The effect of moisture content on the carbonation capacity of BOF slag was also evaluated by conducting batch tests at different moisture contents. In addition, small column experiments were conducted to evaluate the gas migration, transport parameters and the CO2 sequestration potential of BOF slag under simulated landfill gas conditions. The result from the batch and column tests show a significant uptake of CO2 by BOF slag for the tested conditions and demonstrates excellent potential for its use in a landfill cover system. 
    more » « less
  4. Abstract Methane pyrolysis is an emerging technology to produce lower-carbon intensity hydrogen at scale, as long as the co-produced solid carbon is permanently captured. Partially replacing Portland cement with pyrolytic carbon would allow the sequestration at a scale that matches the needs of the H 2 industry. Our results suggest that compressive strength, the most critical mechanical property, of blended cement could even be improved while the cement manufacture, which contributes to ~ 9% global anthropogenic CO 2 emissions, can be decarbonized. A CO 2 abatement up to 10% of cement production could be achieved with the inclusion of selected carbon morphologies, without the need of significant capital investment and radical modification of current production processes. The use of solid carbon could have a higher CO 2 abatement potential than the incorporation of conventional industrial wastes used in concrete at the same replacement level. With this approach, the concrete industry could become an enabler for manufacturing a lower-carbon intensity hydrogen in a win–win solution. Impact Methane pyrolysis is an up-scalable technology that produces hydrogen as a lower carbon-intensity energy carrier and industrial feedstock. This technology can attract more investment for lower-carbon intensity hydrogen if co-produced solid carbon (potentially hundreds of million tons per year) has value-added applications. The solid carbon can be permanently stored in concrete, the second most used commodity worldwide. To understand the feasibility of this carbon storage strategy, up to 10 wt% of Portland cement is replaced with disk-like or fibrillar carbon in our study. The incorporation of 5% and 10% fibrillar carbons increase the compressive strength of the cement-based materials by at least 20% and 16%, respectively, while disk-like carbons have little beneficial effects on the compressive strength. Our life-cycle assessment in climate change category results suggest that the 10% cement replacement with the solid carbon can lower ~10% of greenhouse gas emissions of cement production, which is currently the second-largest industrial emitter in the world. The use of solid carbon in concrete can supplement the enormous demand for cement substitute for low-carbon concrete and lower the cost of the low-carbon hydrogen production. This massively available low-cost solid carbon would create numerous new opportunities in concrete research and the industrial applications. 
    more » « less
  5. Abstract Rapid decarbonization of the cement industry is critical to meeting climate goals. Oversimplification of direct air capture benefits from hydrated cement carbonation has skewed the ability to derive decarbonization solutions. Here, we present both global cement carbonation magnitude and its dynamic effect on cumulative radiative forcing. From 1930–2015, models suggest approximately 13.8 billion metric tons (Gt) of CO2was re-absorbed globally. However, we show that the slow rate of carbonation leads to a climate effect that is approximately 60% smaller than these apparent benefits. Further, we show that on a per kilogram (kg) basis, demolition emissions from crushing concrete at end-of-life could roughly equal the magnitude of carbon-uptake during the demolition phase. We investigate the sensitivity of common decarbonization strategies, such as utilizing supplementary cementitious materials, on the carbonation process and highlight the importance of the timing of emissions release and uptake on influencing cumulative radiative forcing. Given the urgency of determining effective pathways for decarbonizing cement, this work provides a reference for overcoming some flawed interpretations of the benefits of carbonation. 
    more » « less