skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 11 until 2:00 AM ET on Saturday, July 12 due to maintenance. We apologize for the inconvenience.


Title: Smoothness-Penalized Deconvolution (SPeD) of a Density Estimate
This paper addresses the deconvolution problem of estimating a square-integrable probability density from observations contaminated with additive measurement errors having a known density. The estimator begins with a density estimate of the contaminated observations and minimizes a reconstruction error penalized by an integrated squared m-th derivative. Theory for deconvolution has mainly focused on kernel- or wavelet-based techniques, but other methods including spline-based techniques and this smoothnesspenalized estimator have been found to outperform kernel methods in simulation studies. This paper fills in some of these gaps by establishing asymptotic guarantees for the smoothness-penalized approach. Consistency is established in mean integrated squared error, and rates of convergence are derived for Gaussian, Cauchy, and Laplace error densities, attaining some lower bounds already in the literature. The assumptions are weak for most results; the estimator can be used with a broader class of error densities than the deconvoluting kernel. Our application example estimates the density of the mean cytotoxicity of certain bacterial isolates under random sampling; this mean cytotoxicity can only be measured experimentally with additive error, leading to the deconvolution problem. We also describe a method for approximating the solution by a cubic spline, which reduces to a quadratic program.  more » « less
Award ID(s):
1814840
PAR ID:
10470132
Author(s) / Creator(s):
;
Publisher / Repository:
Taylor &ill-posed problem, measurement error, density estimation, regularization Francis Online
Date Published:
Journal Name:
Journal of the American Statistical Association
ISSN:
0162-1459
Page Range / eLocation ID:
1 to 25
Subject(s) / Keyword(s):
ill-posed problem measurement error density estimation regularization
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The present paper studies density deconvolution in the presence of small Berkson errors, in particular, when the variances of the errors tend to zero as the sample size grows. It is known that when the Berkson errors are present, in some cases, the unknown density estimator can be obtained by simple averaging without using kernels. However, this may not be the case when Berkson errors are asymptotically small. By treating the former case as a kernel estimator with the zero bandwidth, we obtain the optimal expressions for the bandwidth.We show that the density of Berkson errors acts as a regularizer, so that the kernel estimator is unnecessary when the variance of Berkson errors lies above some threshold that depends on the shapes of the densities in the model and the number of observations. 
    more » « less
  2. Summary The lasso has been studied extensively as a tool for estimating the coefficient vector in the high-dimensional linear model; however, considerably less is known about estimating the error variance in this context. In this paper, we propose the natural lasso estimator for the error variance, which maximizes a penalized likelihood objective. A key aspect of the natural lasso is that the likelihood is expressed in terms of the natural parameterization of the multi-parameter exponential family of a Gaussian with unknown mean and variance. The result is a remarkably simple estimator of the error variance with provably good performance in terms of mean squared error. These theoretical results do not require placing any assumptions on the design matrix or the true regression coefficients. We also propose a companion estimator, called the organic lasso, which theoretically does not require tuning of the regularization parameter. Both estimators do well empirically compared to pre-existing methods, especially in settings where successful recovery of the true support of the coefficient vector is hard. Finally, we show that existing methods can do well under fewer assumptions than previously known, thus providing a fuller story about the problem of estimating the error variance in high-dimensional linear models. 
    more » « less
  3. Abstract Generalized cross-validation (GCV) is a widely used method for estimating the squared out-of-sample prediction risk that employs scalar degrees of freedom adjustment (in a multiplicative sense) to the squared training error. In this paper, we examine the consistency of GCV for estimating the prediction risk of arbitrary ensembles of penalized least-squares estimators. We show that GCV is inconsistent for any finite ensemble of size greater than one. Towards repairing this shortcoming, we identify a correction that involves an additional scalar correction (in an additive sense) based on degrees of freedom adjusted training errors from each ensemble component. The proposed estimator (termed CGCV) maintains the computational advantages of GCV and requires neither sample splitting, model refitting, or out-of-bag risk estimation. The estimator stems from a finer inspection of the ensemble risk decomposition and two intermediate risk estimators for the components in this decomposition. We provide a non-asymptotic analysis of the CGCV and the two intermediate risk estimators for ensembles of convex penalized estimators under Gaussian features and a linear response model. Furthermore, in the special case of ridge regression, we extend the analysis to general feature and response distributions using random matrix theory, which establishes model-free uniform consistency of CGCV. 
    more » « less
  4. We consider the statistical connection between the quantized representation of a high dimensional signal X using a random spherical code and the observation of X under an additive white Gaussian noise (AWGN). We show that given X, the conditional Wasserstein distance between its bitrate-R quantized version and its observation under AWGN of signal-to-noise ratio 2^{2R - 1} is sub-linear in the problem dimension. We then utilize this fact to connect the mean squared error (MSE) attained by an estimator based on an AWGN-corrupted version of X to the MSE attained by the same estimator when fed with its bitrate-R quantized version. 
    more » « less
  5. Many two-level nested simulation applications involve the conditional expectation of some response variable, where the expected response is the quantity of interest, and the expectation is with respect to the inner-level random variables, conditioned on the outer-level random variables. The latter typically represent random risk factors, and risk can be quantified by estimating the probability density function (pdf) or cumulative distribution function (cdf) of the conditional expectation. Much prior work has considered a naïve estimator that uses the empirical distribution of the sample averages across the inner-level replicates. This results in a biased estimator, because the distribution of the sample averages is over-dispersed relative to the distribution of the conditional expectation when the number of inner-level replicates is finite. Whereas most prior work has focused on allocating the numbers of outer- and inner-level replicates to balance the bias/variance tradeoff, we develop a bias-corrected pdf estimator. Our approach is based on the concept of density deconvolution, which is widely used to estimate densities with noisy observations but has not previously been considered for nested simulation problems. For a fixed computational budget, the bias-corrected deconvolution estimator allows more outer-level and fewer inner-level replicates to be used, which substantially improves the efficiency of the nested simulation. 
    more » « less