Container Aedes mosquitoes are responsible for the transmission of anthroponotic and zoonotic viruses to people. The surveillance and control of these mosquitoes is an important part of public health protection and prevention of mosquito-borne disease. In this study, we surveyed 327 sites over 2 weeks in late June and early July in 2017 in North Carolina, USA for the presence and abundance of Aedes spp. eggs in an effort to better target potential Ae. aegypti collections. We examined the ability of 2 types of landscape data, Light Detection And Ranging (LIDAR) and National Land Cover Database (NLCD) to explain the presence and abundance of eggs using principal component analysis to deal with collinearity, followed by generalized linear regression. We explained variation of both egg presence and abundance for Aedes albopictus (Skuse) and Aedes triseriatus (Say) using both NLCD and LIDAR data. However, the ability to make robust predictions was limited by variation in the data. Increased sampling time and better landscape data would likely improve the predictive ability of our models, as would a better understanding of oviposition behavior.
more »
« less
A Habitat Model for Disease Vector Aedes aegypti in the Tampa Bay Area, Florida
ABSTRACT Within the contiguous USA, Florida is unique in having tropical and subtropical climates, a great abundance and diversity of mosquito vectors, and high rates of human travel. These factors contribute to the state being the national ground zero for exotic mosquito-borne diseases, as evidenced by local transmission of viruses spread by Aedes aegypti, including outbreaks of dengue in 2022 and Zika in 2016. Because of limited treatment options, integrated vector management is a key part of mitigating these arboviruses. Practical knowledge of when and where mosquito populations of interest exist is critical for surveillance and control efforts, and habitat predictions at various geographic scales typically rely on ecological niche modeling. However, most of these models, usually created in partnership with academic institutions, demand resources that otherwise may be too time-demanding or difficult for mosquito control programs to replicate and use effectively. Such resources may include intensive computational requirements, high spatiotemporal resolutions of data not regularly available, and/or expert knowledge of statistical analysis. Therefore, our study aims to partner with mosquito control agencies in generating operationally useful mosquito abundance models. Given the increasing threat of mosquito-borne disease transmission in Florida, our analytic approach targets recent Ae. aegypti abundance in the Tampa Bay area. We investigate explanatory variables that: 1) are publicly available, 2) require little to no preprocessing for use, and 3) are known factors associated with Ae. aegypti ecology. Out of our 4 final models, none required more than 5 out of the 36 predictors assessed (13.9%). Similar to previous literature, the strongest predictors were consistently 3- and 4-wk temperature and precipitation lags, followed closely by 1 of 2 environmental predictors: land use/land cover or normalized difference vegetation index. Surprisingly, 3 of our 4 final models included one or more socioeconomic or demographic predictors. In general, larger sample sizes of trap collections and/or citizen science observations should result in greater confidence in model predictions and validation. However, given disparities in trap collections across jurisdictions, individual county models rather than a multicounty conglomerate model would likely yield stronger model fits. Ultimately, we hope that the results of our assessment will enable more accurate and precise mosquito surveillance and control of Ae. aegypti in Florida and beyond.
more »
« less
- Award ID(s):
- 2014547
- PAR ID:
- 10470162
- Publisher / Repository:
- The American Mosquito Control Association, Inc.
- Date Published:
- Journal Name:
- Journal of the American Mosquito Control Association
- Volume:
- 39
- Issue:
- 2
- ISSN:
- 8756-971X
- Page Range / eLocation ID:
- 96 to 107
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Hamer, Gabriel (Ed.)Abstract Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competitive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, with the goal of capturing the outcome of interspecific competition across space by building habitat suitability maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and incorporated climatic, landscape, and human population data to identify predictors of habitat suitability for both species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suitability, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded minimum daily temperature showed significant, inverse relationships with both species. We detected minor Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk assessment and the improvement of operational applications to control container-breeding Aedes mosquitoes.more » « less
-
ABSTRACT Mosquito surveillance is critical to reduce the risk of West Nile virus (WNV) transmission to humans. In response to surveillance indicators such as elevated mosquito abundance or increased WNV levels, many mosquito control programs will perform truck-mounted ultra-low volume (ULV) adulticide application to reduce the number of mosquitoes and associated virus transmission. Despite the common use of truck-based ULV adulticiding as a public health measure to reduce WNV prevalence, limited evidence exists to support a role in reducing viral transmission to humans. We use a generalized additive and fused ridge regression model to quantify the location-specific impact of truck-mounted ULV adulticide spray efforts from 2010 to 2018 in the North Shore Mosquito Abatement District (NSMAD) in metropolitan Chicago, IL, on commonly assessed risk factors from NSMAD surveillance gravid traps: Culex abundance, infection rate, and vector index. Our model also takes into account environmental variables commonly associated with WNV, including temperature, precipitation, wind speed, location, and week of year. Since it is unlikely ULV adulticide spraying will have the same impact at each trap location, we use a spatially varying spray effect with a fused ridge penalty to determine how the effect varies by trap location. We found that ULV adulticide spraying has an immediate temporary reduction in abundance followed by an increase after 5 days. It is estimated that mosquito abundance increased more in sprayed areas than if left unsprayed in all but 3 trap locations. The impact on infection rate and vector index were inconclusive due to the large error associated with estimating trap-specific infection rates.more » « less
-
Abstract BackgroundEffectively controlling heartworm disease—a major parasitic disease threatening animal health in the US and globally—requires understanding the local ecology of mosquito vectors involved in transmission. However, the key vector species in a given region are often unknown and challenging to identify. Here we investigate (i) the key vector species associated with transmission of the parasite,Dirofilaria immitis, in California and (ii) the climate and land cover drivers of vector presence. MethodsTo identify key mosquito vectors involved in transmission, we incorporated long-term, finely resolved mosquito surveillance data and dog heartworm case data in a statistical modeling approach (fixed-effects regression) that rigorously controls for other unobserved drivers of heartworm cases. We then used a flexible machine learning approach (gradient boosted machines) to identify the climate and land cover variables associated with the presence of each species. ResultsWe found significant, regionally specific, positive associations between dog heartworm cases and the abundance of four vector species:Aedes aegypti(Central California),Ae. albopictus(Southern California),Ae. sierrensis(Central California), andCuliseta incidens(Northern and Central California). The proportion of developed land cover was one of the most important ecological variables predicting the presence or absence of the putative vector species. ConclusionOur results implicate three previously under-recognized vectors of dog heartworm transmission in California and indicate the land cover types in which each putative vector species is commonly found. Efforts to target these species could prioritize surveillance in these land cover types (e.g. near human dwellings in less urbanized settings forAe. albopictusandCs. incidens) but further investigation on the natural infection prevalence and host-biting rates of these species, as well as the other local vectors, is needed. Graphical Abstractmore » « less
-
ika virus is an emerging arbovirus of humans in the western hemisphere. With its potential spread into new geographical areas, it is important to define the vector competence of native mosquito species. We tested the vector competency of Aedes vexans (Meigen) from the Lake Agassiz Plain of northwestern Minnesota and northeastern North Dakota. Aedes aegypti (L.) was used as a positive control for comparison. Mosquitoes were fed blood containing Zika virus and 2 wk later were tested for viral infection and dissemination. Aedes vexans (n = 60) were susceptible to midgut infection (28% infection rate) but displayed a fairly restrictive midgut escape barrier (3% dissemination rate). Cofed Ae. aegypti (n = 22) displayed significantly higher rates of midgut infection (61%) and dissemination (22%). To test virus transmission, mosquitoes were inoculated with virus and 16-17 d later, tested for their ability to transmit virus into fluid-filled capillary tubes. Unexpectedly, the transmission rate was significantly higher for Ae. vexans (34%, n = 47) than for Ae. aegypti (5%, n = 22). The overall transmission potential for Ae. vexans to transmit Zika virus was 1%. Because of its wide geographic distribution, often extreme abundance, and aggressive human biting activity, Ae. vexans could serve as a potential vector for Zika virus in northern latitudes where the conventional vectors, Ae. aegypti and Ae. albopictus Skuse, cannot survive. However, Zika virus is a primate virus and humans are the only amplifying host species in northern latitudes. To serve as a vector of Zika virus, Ae. vexans must feed repeatedly on humans. Defining the propensity of Ae. vexans to feed repeatedly on humans will be key to understanding its role as a potential vector of Zika virus.more » « less
An official website of the United States government

