skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Short-Term, Large-Area Survey of Container Aedes spp. (Diptera: Culicidae): Presence and Abundance is Associated with Fine-scale Landscape Factors in North Carolina, USA
Container Aedes mosquitoes are responsible for the transmission of anthroponotic and zoonotic viruses to people. The surveillance and control of these mosquitoes is an important part of public health protection and prevention of mosquito-borne disease. In this study, we surveyed 327 sites over 2 weeks in late June and early July in 2017 in North Carolina, USA for the presence and abundance of Aedes spp. eggs in an effort to better target potential Ae. aegypti collections. We examined the ability of 2 types of landscape data, Light Detection And Ranging (LIDAR) and National Land Cover Database (NLCD) to explain the presence and abundance of eggs using principal component analysis to deal with collinearity, followed by generalized linear regression. We explained variation of both egg presence and abundance for Aedes albopictus (Skuse) and Aedes triseriatus (Say) using both NLCD and LIDAR data. However, the ability to make robust predictions was limited by variation in the data. Increased sampling time and better landscape data would likely improve the predictive ability of our models, as would a better understanding of oviposition behavior.  more » « less
Award ID(s):
1633608
PAR ID:
10341196
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
Environmental Health Insights
Volume:
14
ISSN:
1178-6302
Page Range / eLocation ID:
117863022095280
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Yee, Donald (Ed.)
    Abstract Container Aedes mosquitoes are the most important vectors of human arboviruses (i.e., dengue, chikungunya, Zika, or yellow fever). Invasive and native container Aedes spp. potentially utilize natural and artificial containers in specific environments for oviposition. Several container Aedes spp. display ‘skip-oviposition’ behavior, which describes the distribution of eggs among multiple containers during a single gonotrophic cycle. In this study, we compared individual skip-oviposition behavior using identical eight-cup testing arenas with three container Aedes species: Aedes aegypti (Linnaeus), Aedes albopictus (Skuse), and Aedes triseriatus (Say). We applied the index of dispersion, an aggregation statistic, to individual mosquitoes’ oviposition patterns to assess skip-oviposition behavior. Aedes aegypti and Ae. albopictus utilized more cups and distributed eggs more evenly among cups than Ae. triseriatus under nutritionally enriched oviposition media (oak leaf infusion) conditions. When presented with a nutritionally unenriched (tap water) oviposition media, both Ae. aegypti and Ae. albopictus increased egg spreading behavior. Aedes albopictus did not modify skip-oviposition behavior when reared and assessed under fall-like environmental conditions, which induce diapause egg production. This study indicates specific oviposition site conditions influence skip-oviposition behavior with ‘preferred’ sites receiving higher amounts of eggs from any given individual and ‘non-preferred’ sites receive a limited contribution of eggs. A further understanding of skip-oviposition behavior is needed to make the best use of autodissemination trap technology in which skip-ovipositing females spread a potent larvicide among oviposition sites within the environment. 
    more » « less
  2. Haematophagous mosquitoes need a blood meal to complete their reproductive cycle. To accomplish this, female mosquitoes seek vertebrate hosts, land on them and bite. As their eggs mature, they shift attention away from hosts and towards finding sites to lay eggs. We asked whether females were more tuned to visual cues when a host-related signal, carbon dioxide, was present, and further examined the effect of a blood meal, which shifts behaviour to ovipositing. Using a custom, tethered-flight arena that records wing stroke changes while displaying visual cues, we found the presence of carbon dioxide enhances visual attention towards discrete stimuli and improves contrast sensitivity for host-seeking Aedes aegypti mosquitoes. Conversely, intake of a blood meal reverses vertical bar tracking, a stimulus that non-fed females readily follow. This switch in behaviour suggests that having a blood meal modulates visual attention in mosquitoes, a phenomenon that has been described before in olfaction but not in visually driven behaviours. 
    more » « less
  3. Culexmosquitoes transmit several pathogens to humans and animals, including viruses that cause West Nile fever and St. Louis encephalitis and filarial nematodes that cause canine heartworm and elephantiasis. Additionally, these mosquitoes have a cosmopolitan distribution and provide interesting models for understanding population genetics, overwintering dormancy, disease transmission, and other important and ecological questions. However, unlikeAedesmosquitoes that produce eggs that can be stored for weeks at a time, no obvious “stopping” point exists in the development ofCulexmosquitoes. Therefore, these mosquitoes require nearly continuous care and attention. Here, we describe some general considerations when rearing laboratory colonies ofCulexmosquitoes. We highlight different methods so that readers may choose what works best for their experimental needs and laboratory infrastructure. We hope that this information will enable additional scientists to conduct laboratory research on these important disease vectors. 
    more » « less
  4. Hamer, Gabriel (Ed.)
    Abstract Many species distribution maps indicate the ranges of Aedes aegypti (Linnaeus) and Aedes albopictus (Skuse) overlap in Florida despite the well-documented range reduction of Ae. aegypti. Within the last 30 yr, competitive displacement of Ae. aegypti by Ae. albopictus has resulted in partial spatial segregation of the two species, with Ae. aegypti persisting primarily in urban refugia. We modeled fine-scale distributions of both species, with the goal of capturing the outcome of interspecific competition across space by building habitat suitability maps. We empirically parameterized models by sampling 59 sites in south and central Florida over time and incorporated climatic, landscape, and human population data to identify predictors of habitat suitability for both species. Our results show human density, precipitation, and urban land cover drive Ae. aegypti habitat suitability, compared with exclusively climatic variables driving Ae. albopictus habitat suitability. Remotely sensed variables (macrohabitat) were more predictive than locally collected metrics (microhabitat), although recorded minimum daily temperature showed significant, inverse relationships with both species. We detected minor Aedes habitat segregation; some periurban areas that were highly suitable for Ae. albopictus were unsuitable for Ae. aegypti. Fine-scale empirical models like those presented here have the potential for precise risk assessment and the improvement of operational applications to control container-breeding Aedes mosquitoes. 
    more » « less
  5. Climate warming is expected to shift the distributions of mosquitoes and mosquito-borne diseases, promoting expansions at cool range edges and contractions at warm range edges. However, whether mosquito populations could maintain their warm edges through evolutionary adaptation remains unknown. Here, we investigate the potential for thermal adaptation inAedes sierrensis, a congener of the major disease vector species that experiences large thermal gradients in its native range, by assaying tolerance to prolonged and acute heat exposure, and its genetic basis in a diverse, field-derived population. We found pervasive evidence of heritable genetic variation in mosquito heat tolerance, and phenotypic trade-offs in tolerance to prolonged versus acute heat exposure. Further, we found genomic variation associated with prolonged heat tolerance was clustered in several regions of the genome, suggesting the presence of larger structural variants such as chromosomal inversions. A simple evolutionary model based on our data estimates that the maximum rate of evolutionary adaptation in mosquito heat tolerance will exceed the projected rate of climate warming, implying the potential for mosquitoes to track warming via genetic adaptation. 
    more » « less