skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linear Principal Minor Polynomials: Hyperbolic Determinantal Inequalities and Spectral Containment
Abstract A linear principal minor polynomial or lpm polynomial is a linear combination of principal minors of a symmetric matrix. By restricting to the diagonal, lpm polynomials are in bijection with multiaffine polynomials. We show that this establishes a one-to-one correspondence between homogeneous multiaffine stable polynomials and PSD-stable lpm polynomials. This yields new construction techniques for hyperbolic polynomials and allows us to find an explicit degree 3 hyperbolic polynomial in six variables some of whose Rayleigh differences are not sums of squares. We further generalize the well-known Fisher–Hadamard and Koteljanskii inequalities from determinants to PSD-stable lpm polynomials. We investigate the relationship between the associated hyperbolicity cones and conjecture a relationship between the eigenvalues of a symmetric matrix and the values of certain lpm polynomials evaluated at that matrix. We refer to this relationship as spectral containment.  more » « less
Award ID(s):
1901950
PAR ID:
10470244
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
Oxford University Press
Date Published:
Journal Name:
International Mathematics Research Notices
ISSN:
1073-7928
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Principal symmetric ideals were recently introduced by Harada et al. in [The minimal free resolution of a general principal symmetric ideal, preprint (2023), arXiv:2308.03141], where their homological properties are elucidated. They are ideals generated by the orbit of a single polynomial under permutations of variables in a polynomial ring. In this paper, we determine when a product of two principal symmetric ideals is principal symmetric and when the powers of a principal symmetric ideal are again principal symmetric ideals. We characterize the ideals that have the latter property as being generated by polynomials invariant up to a scalar multiple under permutation of variables. Recognizing principal symmetric ideals is an open question for the purpose of which we produce certain obstructions. We also demonstrate that the Hilbert functions of symmetric monomial ideals are not all given by symmetric monomial ideals, in contrast to the non-symmetric case. 
    more » « less
  2. null (Ed.)
    We answer a question of K. Mulmuley. Efremenko et al. (Math. Comp., 2018) have shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this “no-go” result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with maximal space of partial derivatives, including the complete symmetric polynomials. We apply Koszul flattenings to these polynomials to have the first explicit sequence of polynomials with symmetric border rank lower bounds higher than the bounds attainable via partial derivatives. 
    more » « less
  3. Abstract Let $$k \leq n$$ be positive integers, and let $$X_n = (x_1, \dots , x_n)$$ be a list of $$n$$ variables. The Boolean product polynomial$$B_{n,k}(X_n)$$ is the product of the linear forms $$\sum _{i \in S} x_i$$, where $$S$$ ranges over all $$k$$-element subsets of $$\{1, 2, \dots , n\}$$. We prove that Boolean product polynomials are Schur positive. We do this via a new method of proving Schur positivity using vector bundles and a symmetric function operation we call Chern plethysm. This gives a geometric method for producing a vast array of Schur positive polynomials whose Schur positivity lacks (at present) a combinatorial or representation theoretic proof. We relate the polynomials $$B_{n,k}(X_n)$$ for certain $$k$$ to other combinatorial objects including derangements, positroids, alternating sign matrices, and reverse flagged fillings of a partition shape. We also relate $$B_{n,n-1}(X_n)$$ to a bigraded action of the symmetric group $${\mathfrak{S}}_n$$ on a divergence free quotient of superspace. 
    more » « less
  4. Abstract We prove a complex polynomial plank covering theorem for not necessarily homogeneous polynomials. As the consequence of this result, we extend the complex plank theorem of Ball to the case of planks that are not necessarily centrally symmetric and not necessarily round. We also prove a weaker version of the spherical polynomial plank covering conjecture for planks of different widths. 
    more » « less
  5. Abstract As discovered by W. Thurston, the action of a complex one-variable polynomial on its Julia set can be modeled by a geodesic lamination in the disk, provided that the Julia set is connected. It also turned out that the parameter space of such dynamical laminations of degree two gives a model for the bifurcation locus in the space of quadratic polynomials. This model is itself a geodesic lamination, the so calledquadratic minor laminationof Thurston. In the same spirit, we consider the space of allcubic symmetric polynomials$$f_\unicode{x3bb} (z)=z^3+\unicode{x3bb} ^2 z$$in three articles. In the first one, we construct thecubic symmetric comajor laminationtogether with the corresponding quotient space of the unit circle. As is verified in the third paper, this yields a monotone model of thecubic symmetric connectedness locus, that is, the space of all cubic symmetric polynomials with connected Julia sets. In the present paper, the second in the series, we develop an algorithm for generating the cubic symmetric comajor lamination analogous to the Lavaurs algorithm for constructing the quadratic minor lamination. 
    more » « less