skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Explicit Polynomial Sequences with Maximal Spaces of Partial Derivatives and a Question of K. Mulmuley
We answer a question of K. Mulmuley. Efremenko et al. (Math. Comp., 2018) have shown that the method of shifted partial derivatives cannot be used to separate the padded permanent from the determinant. Mulmuley asked if this “no-go” result could be extended to a model without padding. We prove this is indeed the case using the iterated matrix multiplication polynomial. We also provide several examples of polynomials with maximal space of partial derivatives, including the complete symmetric polynomials. We apply Koszul flattenings to these polynomials to have the first explicit sequence of polynomials with symmetric border rank lower bounds higher than the bounds attainable via partial derivatives.  more » « less
Award ID(s):
1814254
PAR ID:
10226387
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Theory of Computing
Volume:
15
Issue:
1
ISSN:
1557-2862
Page Range / eLocation ID:
1 to 24
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Ta-Shma, Amnon (Ed.)
    We study the fundamental challenge of exhibiting explicit functions that have small correlation with low-degree polynomials over 𝔽₂. Our main contributions include: 1) In STOC 2020, CHHLZ introduced a new technique to prove correlation bounds. Using their technique they established new correlation bounds for low-degree polynomials. They conjectured that their technique generalizes to higher degree polynomials as well. We give a counterexample to their conjecture, in fact ruling out weaker parameters and showing what they prove is essentially the best possible. 2) We propose a new approach for proving correlation bounds with the central "mod functions," consisting of two steps: (I) the polynomials that maximize correlation are symmetric and (II) symmetric polynomials have small correlation. Contrary to related results in the literature, we conjecture that (I) is true. We argue this approach is not affected by existing "barrier results." 3) We prove our conjecture for quadratic polynomials. Specifically, we determine the maximum possible correlation between quadratic polynomials modulo 2 and the functions (x_1,… ,x_n) → z^{∑ x_i} for any z on the complex unit circle, and show that it is achieved by symmetric polynomials. To obtain our results we develop a new proof technique: we express correlation in terms of directional derivatives and analyze it by slowly restricting the direction. 4) We make partial progress on the conjecture for cubic polynomials, in particular proving tight correlation bounds for cubic polynomials whose degree-3 part is symmetric. 
    more » « less
  2. We introduce a hitting set generator for Polynomial Identity Testing based on evaluations of low-degree univariate rational functions at abscissas associated with the variables. We establish an equivalence up to rescaling with a generator introduced by Shpilka and Volkovich, which has a similar structure but uses multivariate polynomials. We initiate a systematic analytic study of the power of hitting set generators by characterizing their vanishing ideals, i.e., the sets of polynomials that they fail to hit. We provide two such characterizations for our generator. First, we develop a small collection of polynomials that jointly produce the vanishing ideal. As corollaries, we obtain tight bounds on the minimum degree, sparseness, and partition class size of set-multilinearity in the vanishing ideal. Second, inspired by a connection to alternating algebra, we develop a structured deterministic membership test for the multilinear part of the vanishing ideal. We present a derivation based on alternating algebra along with the required background, as well as one in terms of zero substitutions and partial derivatives, avoiding the need for alternating algebra. As evidence of the utility of our analytic approach, we rederive known derandomization results based on the generator by Shpilka and Volkovich and present a new application in derandomization / lower bounds for read-once oblivious algebraic branching programs. 
    more » « less
  3. Meka, Raghu (Ed.)
    We establish new correlation bounds and pseudorandom generators for a collection of computation models. These models are all natural generalization of structured low-degree polynomials that we did not have correlation bounds for before. In particular: - We construct a PRG for width-2 poly(n)-length branching programs which read d bits at a time with seed length 2^O(√{log n}) ⋅ d²log²(1/ε). This comes quadratically close to optimal dependence in d and log(1/ε). Improving the dependence on n would imply nontrivial PRGs for log n-degree 𝔽₂-polynomials. The previous PRG by Bogdanov, Dvir, Verbin, and Yehudayoff had an exponentially worse dependence on d with seed length of O(dlog n + d2^dlog(1/ε)). - We provide the first nontrivial (and nearly optimal) correlation bounds and PRGs against size-n^Ω(log n) AC⁰ circuits with either n^{.99} SYM gates (computing an arbitrary symmetric function) or n^{.49} THR gates (computing an arbitrary linear threshold function). This is a generalization of sparse 𝔽₂-polynomials, which can be simulated by an AC⁰ circuit with one parity gate at the top. Previous work of Servedio and Tan only handled n^{.49} SYM gates or n^{.24} THR gates, and previous work of Lovett and Srinivasan only handled polynomial-size circuits. - We give exponentially small correlation bounds against degree-n^O(1) 𝔽₂-polynomials which are set-multilinear over some arbitrary partition of the input into n^{1-O(1)} parts (noting that at n parts, we recover all low degree polynomials). This vastly generalizes correlation bounds against degree-d polynomials which are set-multilinear over a fixed partition into d blocks, which were established by Bhrushundi, Harsha, Hatami, Kopparty, and Kumar. The common technique behind all of these results is to fortify a hard function with the right type of extractor to obtain stronger correlation bounds for more general models of computation. Although this technique has been used in previous work, they rely on the model simplifying drastically under random restrictions. We view our results as a proof of concept that such fortification can be done even for classes that do not enjoy such behavior. 
    more » « less
  4. Webs yield an especially important realization of certain Specht modules, irreducible representations of symmetric groups, as they provide a pictorial basis with a convenient diagrammatic calculus. In recent work, the last three authors associated polynomials to noncrossing partitions without singleton blocks, so that the corresponding polynomials form a web basis of the pennant Specht module S(d,d,1n−2d). These polynomials were interpreted as global sections of a line bundle on a 2-step partial flag variety. Here, we both simplify and extend this construction. On the one hand, we show that these polynomials can alternatively be situated in the homogeneous coordinate ring of a Grassmannian, instead of a 2-step partial flag variety, and can be realized as tensor invariants of classical (but highly nonplanar) tensor diagrams. On the other hand, we extend these ideas from the pennant Specht module S(d,d,1n−2d) to more general flamingo Specht modules S(dr,1n−rd). In the hook case r=1, we obtain a spanning set that can be restricted to a basis in various ways. In the case r>2, we obtain a basis of a well-behaved subspace of S(dr,1n−rd), but not of the entire module. 
    more » « less
  5. Raz, Ran (Ed.)
    We give upper and lower bounds on the power of subsystems of the Ideal Proof System (IPS), the algebraic proof system recently proposed by Grochow and Pitassi, where the circuits comprising the proof come from various restricted algebraic circuit classes. This mimics an established research direction in the boolean setting for subsystems of Extended Frege proofs whose lines are circuits from restricted boolean circuit classes. Essentially all of the subsystems considered in this paper can simulate the well-studied Nullstellensatz proof system, and prior to this work there were no known lower bounds when measuring proof size by the algebraic complexity of the polynomials (except with respect to degree, or to sparsity). Our main contributions are two general methods of converting certain algebraic lower bounds into proof complexity ones. Both require stronger arithmetic lower bounds than common, which should hold not for a specific polynomial but for a whole family defined by it. These may be likened to some of the methods by which Boolean circuit lower bounds are turned into related proof-complexity ones, especially the "feasible interpolation" technique. We establish algebraic lower bounds of these forms for several explicit polynomials, against a variety of classes, and infer the relevant proof complexity bounds. These yield separations between IPS subsystems, which we complement by simulations to create a partial structure theory for IPS systems. Our first method is a functional lower bound, a notion of Grigoriev and Razborov, which is a function f' from n-bit strings to a field, such that any polynomial f agreeing with f' on the boolean cube requires large algebraic circuit complexity. We develop functional lower bounds for a variety of circuit classes (sparse polynomials, depth-3 powering formulas, read-once algebraic branching programs and multilinear formulas) where f'(x) equals 1/p(x) for a constant-degree polynomial p depending on the relevant circuit class. We believe these lower bounds are of independent interest in algebraic complexity, and show that they also imply lower bounds for the size of the corresponding IPS refutations for proving that the relevant polynomial p is non-zero over the boolean cube. In particular, we show super-polynomial lower bounds for refuting variants of the subset-sum axioms in these IPS subsystems. Our second method is to give lower bounds for multiples, that is, to give explicit polynomials whose all (non-zero) multiples require large algebraic circuit complexity. By extending known techniques, we give lower bounds for multiples for various restricted circuit classes such sparse polynomials, sums of powers of low-degree polynomials, and roABPs. These results are of independent interest, as we argue that lower bounds for multiples is the correct notion for instantiating the algebraic hardness versus randomness paradigm of Kabanets and Impagliazzo. Further, we show how such lower bounds for multiples extend to lower bounds for refutations in the corresponding IPS subsystem. 
    more » « less