Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Climate-driven permafrost thaw can release ancient carbon to the atmosphere, begetting further warming in a positive feedback loop. Polar ice core data and young radiocarbon ages of dissolved methane in thermokarst lakes have challenged the importance of this feedback, but field studies did not adequately account for older methane released from permafrost through bubbling. We synthesized panarctic isotope and emissions datasets to derive integrated ages of panarctic lake methane fluxes. Methane age in modern thermokarst lakes (3132 ± 731 years before present) reflects remobilization of ancient carbon. Thermokarst-lake methane emissions fit within the constraints imposed by polar ice core data. Younger, albeit ultimately larger sources of methane from glacial lakes, estimated here, lagged those from thermokarst lakes. Our results imply that panarctic lake methane release was a small positive feedback to climate warming, comprising up to 17% of total northern hemisphere sources during the deglacial period.more » « less
-
Abstract Climate warming threatens to destabilize vast northern permafrost areas, potentially releasing large quantities of organic carbon that could further disrupt the climate. Here we synthesize paleorecords of past permafrost-carbon dynamics to contextualize future permafrost stability and carbon feedbacks. We identify key landscape differences between the last deglaciation and today that influence the response of permafrost to atmospheric warming, as well as landscape-level differences that limit subsequent carbon uptake. We show that the current magnitude of thaw has not yet exceeded that of previous deglaciations, but that permafrost carbon release has the potential to exert a strong feedback on future Arctic climate as temperatures exceed those of the Pleistocene. Better constraints on the extent of subsea permafrost and its carbon pool, and on carbon dynamics from a range of permafrost thaw processes, including blowout craters and megaslumps, are needed to help quantify the future permafrost-carbon-climate feedbacks.more » « less
An official website of the United States government
