Abstract We define a type of modulus$$\operatorname {dMod}_p$$ for Lipschitz surfaces based on$$L^p$$ -integrable measurable differential forms, generalizing the vector modulus of Aikawa and Ohtsuka. We show that this modulus satisfies a homological duality theorem, where for Hölder conjugate exponents$$p, q \in (1, \infty )$$ , every relative Lipschitzk-homology classchas a unique dual Lipschitz$$(n-k)$$ -homology class$$c'$$ such that$$\operatorname {dMod}_p^{1/p}(c) \operatorname {dMod}_q^{1/q}(c') = 1$$ and the Poincaré dual ofcmaps$$c'$$ to 1. As$$\operatorname {dMod}_p$$ is larger than the classical surface modulus$$\operatorname {Mod}_p$$ , we immediately recover a more general version of the estimate$$\operatorname {Mod}_p^{1/p}(c) \operatorname {Mod}_q^{1/q}(c') \le 1$$ , which appears in works by Freedman and He and by Lohvansuu. Our theory is formulated in the general setting of Lipschitz Riemannian manifolds, though our results appear new in the smooth setting as well. We also provide a characterization of closed and exact Sobolev forms on Lipschitz manifolds based on integration over Lipschitzk-chains. 
                        more » 
                        « less   
                    
                            
                            Regularity of area minimizing currents mod p
                        
                    
    
            Abstract We establish a first general partial regularity theorem for area minimizing currents$${\mathrm{mod}}(p)$$ , for everyp, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of anm-dimensional area minimizing current$${\mathrm{mod}}(p)$$ cannot be larger than$$m-1$$ . Additionally, we show that, whenpis odd, the interior singular set is$$(m-1)$$ -rectifiable with locally finite$$(m-1)$$ -dimensional measure. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1854147
- PAR ID:
- 10470329
- Publisher / Repository:
- Springer
- Date Published:
- Journal Name:
- Geometric and Functional Analysis
- Volume:
- 30
- Issue:
- 5
- ISSN:
- 1016-443X
- Page Range / eLocation ID:
- 1224 to 1336
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Abstract While studying set function properties of Lebesgue measure, F. Barthe and M. Madiman proved that Lebesgue measure is fractionally superadditive on compact sets in$$\mathbb {R}^n$$ . In doing this they proved a fractional generalization of the Brunn–Minkowski–Lyusternik (BML) inequality in dimension$$n=1$$ . In this paper we will prove the equality conditions for the fractional superadditive volume inequalites for any dimension. The non-trivial equality conditions are as follows. In the one-dimensional case we will show that for a fractional partition$$(\mathcal {G},\beta )$$ and nonempty sets$$A_1,\dots ,A_m\subseteq \mathbb {R}$$ , equality holds iff for each$$S\in \mathcal {G}$$ , the set$$\sum _{i\in S}A_i$$ is an interval. In the case of dimension$$n\ge 2$$ we will show that equality can hold if and only if the set$$\sum _{i=1}^{m}A_i$$ has measure 0.more » « less
- 
            Abstract A conjecture of Erdős states that, for any large primeq, every reduced residue class {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}. We establish a ternary version of this conjecture, showing that, for any sufficiently large cube-free integerq, every reduced residue class {(\operatorname{mod}q)}can be written as {p_{1}p_{2}p_{3}}with {p_{1},p_{2},p_{3}\leq q}primes. We also show that, for any {\varepsilon>0}and any sufficiently large integerq, at least {(\frac{2}{3}-\varepsilon)\varphi(q)}reduced residue classes {(\operatorname{mod}q)}can be represented as a product {p_{1}p_{2}}of two primes {p_{1},p_{2}\leq q}.The problems naturally reduce to studying character sums. The main innovation in the paper is the establishment of a multiplicative dense model theorem for character sums over primes in the spirit of the transference principle. In order to deal with possible local obstructions we establish bounds for the logarithmic density of primes in certain unions of cosets of subgroups of {\mathbb{Z}_{q}^{\times}}of small index and study in detail the exceptional case that there exists a quadratic character {\psi~{}(\operatorname{mod}\,q)}such that {\psi(p)=-1}for very many primes {p\leq q}.more » « less
- 
            Abstract Schinzel and Wójcik have shown that for every$$\alpha ,\beta \in \mathbb {Q}^{\times }\hspace{0.55542pt}{\setminus }\hspace{1.111pt}\{\pm 1\}$$ , there are infinitely many primespwhere$$v_p(\alpha )=v_p(\beta )=0$$ and where$$\alpha $$ and$$\beta $$ generate the same multiplicative group modp. We prove a weaker result in the same direction for algebraic numbers$$\alpha , \beta $$ . Let$$\alpha , \beta \in \overline{\mathbb {Q}} ^{\times }$$ , and suppose$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\alpha )|\ne 1$$ and$$|N_{\mathbb {Q}(\alpha ,\beta )/\mathbb {Q}}(\beta )|\ne 1$$ . Then for some positive integer$$C = C(\alpha ,\beta )$$ , there are infinitely many prime idealsPof Equation missing<#comment/>where$$v_P(\alpha )=v_P(\beta )=0$$ and where the group$$\langle \beta \bmod {P}\rangle $$ is a subgroup of$$\langle \alpha \bmod {P}\rangle $$ with$$[\langle \alpha \bmod {P}\rangle \,{:}\, \langle \beta \bmod {P}\rangle ]$$ dividingC. A key component of the proof is a theorem of Corvaja and Zannier bounding the greatest common divisor of shiftedS-units.more » « less
- 
            Abstract Let$$\mathbb {F}_q^d$$ be thed-dimensional vector space over the finite field withqelements. For a subset$$E\subseteq \mathbb {F}_q^d$$ and a fixed nonzero$$t\in \mathbb {F}_q$$ , let$$\mathcal {H}_t(E)=\{h_y: y\in E\}$$ , where$$h_y:E\rightarrow \{0,1\}$$ is the indicator function of the set$$\{x\in E: x\cdot y=t\}$$ . Two of the authors, with Maxwell Sun, showed in the case$$d=3$$ that if$$|E|\ge Cq^{\frac{11}{4}}$$ andqis sufficiently large, then the VC-dimension of$$\mathcal {H}_t(E)$$ is 3. In this paper, we generalize the result to arbitrary dimension by showing that the VC-dimension of$$\mathcal {H}_t(E)$$ isdwhenever$$E\subseteq \mathbb {F}_q^d$$ with$$|E|\ge C_d q^{d-\frac{1}{d-1}}$$ .more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    