Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this paper we prove a higher dimensional analogue of Carleson’s$$\varepsilon ^{2}$$ conjecture. Given two arbitrary disjoint Borel sets$$\Omega ^{+},\Omega ^{-}\subset \mathbb{R}^{n+1}$$ , and$$x\in \mathbb{R}^{n+1}$$ ,$$r>0$$ , we denote$$ \varepsilon _{n}(x,r) := \frac{1}{r^{n}}\, \inf _{H^{+}} \mathcal{H}^{n} \left ( ((\partial B(x,r)\cap H^{+}) \setminus \Omega ^{+}) \cup (( \partial B(x,r)\cap H^{-}) \setminus \Omega ^{-})\right ), $$ where the infimum is taken over all open affine half-spaces$$H^{+}$$ such that$$x \in \partial H^{+}$$ and we define$$H^{-}= \mathbb{R}^{n+1} \setminus \overline{H^{+}}$$ . Our first main result asserts that the set of points$$x\in \mathbb{R}^{n+1}$$ where$$ \int _{0}^{1} \varepsilon _{n}(x,r)^{2} \, \frac{dr}{r}< \infty $$ is$$n$$ -rectifiable. For our second main result we assume that$$\Omega ^{+}$$ ,$$\Omega ^{-}$$ are open and that$$\Omega ^{+}\cup \Omega ^{-}$$ satisfies the capacity density condition. For each$$x \in \partial \Omega ^{+} \cup \partial \Omega ^{-}$$ and$$r>0$$ , we denote by$$\alpha ^{\pm }(x,r)$$ the characteristic constant of the (spherical) open sets$$\Omega ^{\pm }\cap \partial B(x,r)$$ . We show that, up to a set of$$\mathcal{H}^{n}$$ measure zero,$$x$$ is a tangent point for both$$\partial \Omega ^{+}$$ and$$\partial \Omega ^{-}$$ if and only if$$ \int _{0}^{1} \min (1,\alpha ^{+}(x,r) + \alpha ^{-}(x,r) -2) \frac{dr}{r} < \infty . $$ The first result is new even in the plane and the second one improves and extends to higher dimensions the$$\varepsilon ^{2}$$ conjecture of Carleson.more » « lessFree, publicly-accessible full text available July 1, 2026
-
Abstract We show that for an area minimizingm‐dimensional integral currentTof codimension at least two inside a sufficiently regular Riemannian manifold, the upper Minkowski dimension of the interior singular set is at most . This provides a strengthening of the existing ‐dimensional Hausdorff dimension bound due to Almgren and De Lellis & Spadaro. As a by‐product of the proof, we establish an improvement on the persistence of singularities along the sequence of center manifolds taken to approximateTalong blow‐up scales.more » « less
-
Abstract We consider integral area-minimizing 2-dimensional currents$$T$$ in$$U\subset \mathbf {R}^{2+n}$$ with$$\partial T = Q\left [\!\![{\Gamma }\right ]\!\!]$$ , where$$Q\in \mathbf {N} \setminus \{0\}$$ and$$\Gamma $$ is sufficiently smooth. We prove that, if$$q\in \Gamma $$ is a point where the density of$$T$$ is strictly below$$\frac{Q+1}{2}$$ , then the current is regular at$$q$$ . The regularity is understood in the following sense: there is a neighborhood of$$q$$ in which$$T$$ consists of a finite number of regular minimal submanifolds meeting transversally at$$\Gamma $$ (and counted with the appropriate integer multiplicity). In view of well-known examples, our result is optimal, and it is the first nontrivial generalization of a classical theorem of Allard for$$Q=1$$ . As a corollary, if$$\Omega \subset \mathbf {R}^{2+n}$$ is a bounded uniformly convex set and$$\Gamma \subset \partial \Omega $$ a smooth 1-dimensional closed submanifold, then any area-minimizing current$$T$$ with$$\partial T = Q \left [\!\![{\Gamma }\right ]\!\!]$$ is regular in a neighborhood of $$\Gamma $$ .more » « less
-
Abstract We establish a theory ofQ‐valued functions minimizing a suitable generalization of the Dirichlet integral. In a second paper the theory will be used to approximate efficiently area minimizing currentsmod(p)whenp = 2Q, and to establish a first general partial regularity theorem for everypin any dimension and codimension . © 2020 The Authors.Communications on Pure and Applied Mathematicspublished by Wiley Periodicals LLC.more » « less
-
Abstract We establish a first general partial regularity theorem for area minimizing currents$${\mathrm{mod}}(p)$$ , for everyp, in any dimension and codimension. More precisely, we prove that the Hausdorff dimension of the interior singular set of anm-dimensional area minimizing current$${\mathrm{mod}}(p)$$ cannot be larger than$$m-1$$ . Additionally, we show that, whenpis odd, the interior singular set is$$(m-1)$$ -rectifiable with locally finite$$(m-1)$$ -dimensional measure.more » « less
-
Free, publicly-accessible full text available June 1, 2026
-
Free, publicly-accessible full text available January 1, 2026
-
Free, publicly-accessible full text available December 1, 2025
-
Free, publicly-accessible full text available November 1, 2025
An official website of the United States government
