The hypersimplex is the image of the positive Grassmannian under the moment map. It is a polytope of dimension in . Meanwhile, the amplituhedron is the projection of the positive Grassmannian into the Grassmannian under a map induced by a positive matrix . Introduced in the context ofscattering amplitudes, it is not a polytope, and has full dimension inside . Nevertheless, there seem to be remarkable connections between these two objects viaT-duality, as conjectured by Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]. In this paper we use ideas from oriented matroid theory, total positivity, and the geometry of the hypersimplex and positroid polytopes to obtain a deeper understanding of the amplituhedron. We show that the inequalities cutting outpositroid polytopes—images of positroid cells of under the moment map—translate into sign conditions characterizing the T-dualGrasstopes—images of positroid cells of under . Moreover, we subdivide the amplituhedron intochambers, just as the hypersimplex can be subdivided into simplices, with both chambers and simplices enumerated by the Eulerian numbers. We use these properties to prove the main conjecture of Łukowski, Parisi, and Williams [Int. Math. Res. Not. (2023)]: a collection of positroid polytopes is a tiling of the hypersimplex if and only if the collection of T-dual Grasstopes is a tiling of the amplituhedron for all . Moreover, we prove Arkani-Hamed–Thomas–Trnka’s conjectural sign-flip characterization of , and Łukowski–Parisi–Spradlin–Volovich’s conjectures on cluster adjacencyand onpositroid tilesfor (images of -dimensional positroid cells which map injectively into ). Finally, we introduce new cluster structures in the amplituhedron. 
                        more » 
                        « less   
                    
                            
                            Residual intersections and linear powers
                        
                    
    
            If is an ideal in a Gorenstein ring , and is Cohen-Macaulay, then the same is true for any linked ideal ; but such statements hold for residual intersections of higher codimension only under restrictive hypotheses, not satisfied even by ideals as simple as the ideal of minors of a generic matrix when . In this paper we initiate the study of a different sort of Cohen-Macaulay property that holds for certain general residual intersections of the maximal (interesting) codimension, one less than the analytic spread of . For example, suppose that is the residual intersection of by general quadratic forms in . In this situation we analyze and show that is a self-dual maximal Cohen-Macaulay -module with linear free resolution over . The technical heart of the paper is a result about ideals of analytic spread 1 whose high powers are linearly presented. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1802383
- PAR ID:
- 10470386
- Publisher / Repository:
- American Mathematical Society (AMS)
- Date Published:
- Journal Name:
- Transactions of the American Mathematical Society, Series B
- Volume:
- 10
- Issue:
- 37
- ISSN:
- 2330-0000
- Format(s):
- Medium: X Size: p. 1333-1355
- Size(s):
- p. 1333-1355
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            We consider minimizing harmonic maps from into a closed Riemannian manifold and prove: 1. an extension to of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold is finite, we have\[ \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is we obtain that the singular set of is stable under small -perturbations of the boundary data. In dimension both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space with and satisfying . We also discuss sharpness.more » « less
- 
            In this paper we consider which families of finite simple groups have the property that for each there exists such that, if and are normal subsets of with at least elements each, then every non-trivial element of is the product of an element of and an element of . We show that this holds in a strong and effective sense for finite simple groups of Lie type of bounded rank, while it does not hold for alternating groups or groups of the form where is fixed and . However, in the case and alternating this holds with an explicit bound on in terms of . Related problems and applications are also discussed. In particular we show that, if are non-trivial words, is a finite simple group of Lie type of bounded rank, and for , denotes the probability that where are chosen uniformly and independently, then, as , the distribution tends to the uniform distribution on with respect to the norm.more » « less
- 
            We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable -category of non- -invariant motivic spectra, which turns out to be equivalent to the -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this -category satisfies -homotopy invariance and weighted -homotopy invariance, which we use in place of -homotopy invariance to obtain analogues of several key results from -homotopy theory. These allow us in particular to define a universal oriented motivic -ring spectrum . We then prove that the algebraic K-theory of a qcqs derived scheme can be recovered from its -cohomology via a Conner–Floyd isomorphism\[ \]where is the Lazard ring and . Finally, we prove a Snaith theorem for the periodized version of .more » « less
- 
            We prove a single-value version of Reshetnyak’s theorem. Namely, if a non-constant map from a domain satisfies the estimate at almost every for some , and , then is discrete, the local index is positive in , and every neighborhood of a point of is mapped to a neighborhood of . Assuming this estimate for a fixed at every is equivalent to assuming that the map is -quasiregular, even if the choice of is different for each . Since the estimate also yields a single-value Liouville theorem, it hence appears to be a good pointwise definition of -quasiregularity. As a corollary of our single-value Reshetnyak’s theorem, we obtain a higher-dimensional version of the argument principle that played a key part in the solution to the Calderón problem.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
