skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: On the Size of the Singular Set of Minimizing Harmonic Maps
We consider minimizing harmonic maps u u from Ω<#comment/> ⊂<#comment/> R n \Omega \subset \mathbb {R}^n into a closed Riemannian manifold N \mathcal {N} and prove: 1. an extension to n ≥<#comment/> 4 n \geq 4 of Almgren and Lieb’s linear law. That is, if the fundamental group of the target manifold N \mathcal {N} is finite, we have\[ H n −<#comment/> 3 ( sing ⁡<#comment/> u ) ≤<#comment/> C ∫<#comment/> ∂<#comment/> Ω<#comment/> | ∇<#comment/> T u | n −<#comment/> 1 d H n −<#comment/> 1 ; \mathcal {H}^{n-3}(\operatorname {sing} u) \le C \int _{\partial \Omega } |\nabla _T u|^{n-1} \,\mathrm {d}\mathcal {H}^{n-1}; \]2. an extension of Hardt and Lin’s stability theorem. Namely, assuming that the target manifold is N = S 2 \mathcal {N}=\mathbb {S}^2 we obtain that the singular set of u u is stable under small W 1 , n −<#comment/> 1 W^{1,n-1} -perturbations of the boundary data. In dimension n = 3 n=3 both results are shown to hold with weaker hypotheses, i.e., only assuming that the trace of our map lies in the fractional space W s , p W^{s,p} with s ∈<#comment/> ( 1 2 , 1 ] s \in (\frac {1}{2},1] and p ∈<#comment/> [ 2 , ∞<#comment/> ) p \in [2,\infty ) satisfying s p ≥<#comment/> 2 sp \geq 2 . We also discuss sharpness.  more » « less
Award ID(s):
2044898
PAR ID:
10591159
Author(s) / Creator(s):
; ;
Publisher / Repository:
AMS
Date Published:
Journal Name:
Memoirs of the American Mathematical Society
Volume:
302
Issue:
1519
ISSN:
0065-9266
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We show that if L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 are linear transformations from Z d \mathbb {Z}^d to Z d \mathbb {Z}^d satisfying certain mild conditions, then, for any finite subset A A of Z d \mathbb {Z}^d , | L 1 A + L 2 A | ≥<#comment/> ( | det ( L 1 ) | 1 / d + | det ( L 2 ) | 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |\mathcal {L}_1 A+\mathcal {L}_2 A|\geq \left ( |\det (\mathcal {L}_1)|^{1/d}+|\det (\mathcal {L}_2)|^{1/d} \right )^d|A|- o(|A|). \end{equation*} This result corrects and confirms the two-summand case of a conjecture of Bukh and is best possible up to the lower-order term for certain choices of L 1 \mathcal {L}_1 and L 2 \mathcal {L}_2 . As an application, we prove a lower bound for | A + λ<#comment/> ⋅<#comment/> A | |A + \lambda \cdot A| when A A is a finite set of real numbers and λ<#comment/> \lambda is an algebraic number. In particular, when λ<#comment/> \lambda is of the form ( p / q ) 1 / d (p/q)^{1/d} for some p , q , d ∈<#comment/> N p, q, d \in \mathbb {N} , each taken as small as possible for such a representation, we show that | A + λ<#comment/> ⋅<#comment/> A | ≥<#comment/> ( p 1 / d + q 1 / d ) d | A | −<#comment/> o ( | A | ) . \begin{equation*} |A + \lambda \cdot A| \geq (p^{1/d} + q^{1/d})^d |A| - o(|A|). \end{equation*} This is again best possible up to the lower-order term and extends a recent result of Krachun and Petrov which treated the case λ<#comment/> = 2 \lambda = \sqrt {2}
    more » « less
  2. This is the first of our papers on quasi-split affine quantum symmetric pairs ( U ~<#comment/> ( g ^<#comment/> ) , U ~<#comment/> ı<#comment/> ) \big (\widetilde {\mathbf U}(\widehat {\mathfrak g}), \widetilde {{\mathbf U}}^\imath \big ) , focusing on the real rank one case, i.e., g = s l 3 \mathfrak g = \mathfrak {sl}_3 equipped with a diagram involution. We construct explicitly a relative braid group action of type A 2 ( 2 ) A_2^{(2)} on the affine ı<#comment/> \imath quantum group U ~<#comment/> ı<#comment/> \widetilde {{\mathbf U}}^\imath . Real and imaginary root vectors for U ~<#comment/> ı<#comment/> \widetilde {{\mathbf U}}^\imath are constructed, and a Drinfeld type presentation of U ~<#comment/> ı<#comment/> \widetilde {{\mathbf U}}^\imath is then established. This provides a new basic ingredient for the Drinfeld type presentation of higher rank quasi-split affine ı<#comment/> \imath quantum groups in the sequels. 
    more » « less
  3. We show that for primes N , p ≥<#comment/> 5 N, p \geq 5 with N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , the class number of Q ( N 1 / p ) \mathbb {Q}(N^{1/p}) is divisible by p p . Our methods are via congruences between Eisenstein series and cusp forms. In particular, we show that when N ≡<#comment/> −<#comment/> 1 mod p N \equiv -1 \bmod p , there is always a cusp form of weight 2 2 and level Γ<#comment/> 0 ( N 2 ) \Gamma _0(N^2) whose ℓ<#comment/> \ell th Fourier coefficient is congruent to ℓ<#comment/> + 1 \ell + 1 modulo a prime above p p , for all primes ℓ<#comment/> \ell . We use the Galois representation of such a cusp form to explicitly construct an unramified degree- p p extension of Q ( N 1 / p ) \mathbb {Q}(N^{1/p})
    more » « less
  4. Let Ω<#comment/> + ⊂<#comment/> R n + 1 \Omega ^+\subset \mathbb {R}^{n+1} be a bounded δ<#comment/> \delta -Reifenberg flat domain, with δ<#comment/> > 0 \delta >0 small enough, possibly with locally infinite surface measure. Assume also that Ω<#comment/> −<#comment/> = R n + 1 ∖<#comment/> Ω<#comment/> + ¯<#comment/> \Omega ^-= \mathbb {R}^{n+1}\setminus \overline {\Omega ^+} is an NTA (non-tangentially accessible) domain as well and denote by ω<#comment/> + \omega ^+ and ω<#comment/> −<#comment/> \omega ^- the respective harmonic measures of Ω<#comment/> + \Omega ^+ and Ω<#comment/> −<#comment/> \Omega ^- with poles p ±<#comment/> ∈<#comment/> Ω<#comment/> ±<#comment/> p^\pm \in \Omega ^\pm . In this paper we show that the condition that log ⁡<#comment/> d ω<#comment/> −<#comment/> d ω<#comment/> + ∈<#comment/> VMO ⁡<#comment/> ( ω<#comment/> + ) \log \dfrac {d\omega ^-}{d\omega ^+} \in \operatorname {VMO}(\omega ^+) is equivalent to Ω<#comment/> + \Omega ^+ being a chord-arc domain with inner unit normal belonging to VMO ⁡<#comment/> ( H n | ∂<#comment/> Ω<#comment/> + ) \operatorname {VMO}(\mathcal {H}^n|_{\partial \Omega ^+})
    more » « less
  5. We formulate and prove a Conner–Floyd isomorphism for the algebraic K-theory of arbitrary qcqs derived schemes. To that end, we study a stable ∞<#comment/> \infty -category of non- A 1 \mathbb {A}^1 -invariant motivic spectra, which turns out to be equivalent to the ∞<#comment/> \infty -category of fundamental motivic spectra satisfying elementary blowup excision, previously introduced by the first and third authors. We prove that this ∞<#comment/> \infty -category satisfies P 1 \mathbb {P}^1 -homotopy invariance and weighted A 1 \mathbb {A}^1 -homotopy invariance, which we use in place of A 1 \mathbb {A}^1 -homotopy invariance to obtain analogues of several key results from A 1 \mathbb {A}^1 -homotopy theory. These allow us in particular to define a universal oriented motivic E ∞<#comment/> \mathbb {E}_\infty -ring spectrum M G L \mathrm {MGL} . We then prove that the algebraic K-theory of a qcqs derived scheme X X can be recovered from its M G L \mathrm {MGL} -cohomology via a Conner–Floyd isomorphism\[ M G L ∗<#comment/> ∗<#comment/> ( X ) ⊗<#comment/> L Z [ β<#comment/> ±<#comment/> 1 ] ≃<#comment/> K ∗<#comment/> ∗<#comment/> ( X ) , \mathrm {MGL}^{**}(X)\otimes _{\mathrm {L}{}}\mathbb {Z}[\beta ^{\pm 1}]\simeq \mathrm {K}{}^{**}(X), \]where L \mathrm {L}{} is the Lazard ring and K p , q ( X ) = K 2 q −<#comment/> p ( X ) \mathrm {K}{}^{p,q}(X)=\mathrm {K}{}_{2q-p}(X) . Finally, we prove a Snaith theorem for the periodized version of M G L \mathrm {MGL}
    more » « less